Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 277: 120231, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37330025

ABSTRACT

Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods.


Subject(s)
Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Monte Carlo Method , Phantoms, Imaging
2.
Magn Reson Imaging ; 91: 52-61, 2022 09.
Article in English | MEDLINE | ID: mdl-35561868

ABSTRACT

This work focuses on obtaining a magnetic resonance imaging (MRI) signal representation that accounts for a longitudinal T1 and transverse T2⋆ relaxations while at the same time integrating directional diffusion in the context of scattered multi-parametric acquisitions, where only a few diffusion gradient directions and b-values are available for each pair of echo and inversion times. The method is based on the three-dimensional simple harmonic oscillator-based reconstruction and estimation (SHORE) representation of the diffusion signal, which enables the estimation of the orientation distribution function and the retrieval of various quantitative indices such as the generalized fractional anisotropy or the return-to-the-origin probability while simultaneously resolving for T1 and T2⋆ relaxation times. Our technique, the Relax-SHORE, has been tested on both in silico and in vivo diffusion-relaxation scattered MR data. The results show that Relax-SHORE is accurate in the context of scattered acquisitions while guaranteeing flexibility in the diffusion signal representation from multi-parametric sequences.


Subject(s)
Diffusion Magnetic Resonance Imaging , Magnetic Resonance Imaging , Anisotropy , Brain , Diffusion , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods
3.
Neuroimage ; 240: 118367, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34237442

ABSTRACT

Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. The received submissions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.


Subject(s)
Brain/diagnostic imaging , Databases, Factual , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Animals , Brain/physiology , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...