Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 17(3): 694-703, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33216104

ABSTRACT

The greatest concern in dairy farming nowadays is bovine mastitis (BM), which results mainly from bacterial colonization of the mammary gland. Antibiotics are the most widely used strategy for its prevention and treatment, but overuse has led to growing antimicrobial resistance. Pathogens have also developed other mechanisms to persist in the udder, such as biofilm formation and internalization into bovine epithelial cells. New therapies are therefore needed to reduce or replace antibiotic therapies. In a previous study, we found that chitosan nanoparticles (Ch-NPs) have considerable potential for the treatment of BM. The aim of the present study was to evaluate the antimicrobial activity of differently-synthesized Ch-NPs against BM pathogens and their toxicity in bovine cells in vitro, to further explore the attributes of Ch-NPs for the prevention and treatment of intramammary infections. We also looked into their ability to inhibit biofilm formation and prevent the internalization of S. aureus into mammary epithelial cells. Finally, since an interesting approach for BM prevention is to enhance the host's immune response, we studied whether Ch-NPs could promote the release of pro-inflammatory cytokines in mammary epithelial cells. The results reveal that the bactericidal effect of Ch-NPs on BM pathogens and their ability to inhibit biofilm formation are size-dependent, with smaller particles being more efficient. In contrast, their effect on the viability of the cell lines is not size-dependent and all samples tested were non-toxic. The smallest Ch-NPs successfully prevented the internalization of S. aureus into the cells, but did not promote the production of pro-inflammatory cytokines. These findings make it possible to conclude that Ch-NPs are a great bactericidal agent which can prevent the main mechanisms developed by BM pathogens to persist in the udder.


Subject(s)
Chitosan , Mastitis, Bovine , Nanoparticles , Animals , Anti-Bacterial Agents/toxicity , Cattle , Chitosan/pharmacology , Female , Mastitis, Bovine/drug therapy , Mastitis, Bovine/prevention & control , Staphylococcus aureus
2.
Sci Rep ; 8(1): 5081, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29572457

ABSTRACT

Bovine mastitis affects the health of dairy cows and the profitability of herds worldwide. Coagulase-negative staphylococci (CNS) are the most frequently isolated pathogens in bovine intramammary infection. Based on the wide range of antimicrobial, mucoadhesive and immunostimulant properties demonstrated by chitosan, we have evaluated therapy efficiency of chitosan incorporation to cloxacillin antibiotic as well as its effect against different bacterial lifestyles of seven CNS isolates from chronic intramammary infections. The therapeutic effects of combinations were evaluated on planktonic cultures, bacterial biofilms and intracellular growth in mammary epithelial cells. We found that biofilms and intracellular growth forms offered a strong protection against antibiotic therapy. On the other hand, we found that chitosan addition to cloxacillin efficiently reduced the antibiotic concentration necessary for bacterial killing in different lifestyle. Remarkably, the combined treatment was not only able to inhibit bacterial biofilm establishment and increase preformed biofilm eradication, but it also reduced intracellular bacterial viability while it increased IL-6 secretion by infected epithelial cells. These findings provide a new approach to prophylactic drying therapy that could help to improve conventional antimicrobial treatment against different forms of bacterial growth in an efficient, safer and greener manner reducing multiresistant bacteria generation and spread.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Chitosan/therapeutic use , Cloxacillin/therapeutic use , Mastitis, Bovine/drug therapy , Staphylococcal Infections/veterinary , Staphylococcus/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cattle , Chitosan/administration & dosage , Chitosan/pharmacology , Cloxacillin/administration & dosage , Cloxacillin/pharmacology , Female , Mastitis, Bovine/microbiology , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus/isolation & purification , Staphylococcus/physiology
3.
Anticancer Drugs ; 25(7): 810-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24681551

ABSTRACT

The prognosis and incidence of colon cancer are linked to vitamin D3 serum levels. To evaluate the effects of D,L-buthionine-S,R-sulfoximine (BSO), 1,25(OH)2D3 and their combination on intestinal Caco-2 cell growth, to elucidate the possible cellular mechanisms involved in their antiproliferative action, and to determine whether BSO acts as a sensitizer to 1,25(OH)2D3 treatment, enabling minimization of the toxic effects caused by high doses of the steroid. Human colon cancer Caco-2 cells were treated with 1,25(OH)2D3, BSO, both, or vehicle. Cell proliferation was evaluated by crystal violet staining. Cell cycle and mitochondrial membrane potential were measured by flow cytometry. Total glutathione, catalase, superoxide dismutase, superoxide anion levels, and alkaline phosphatase activities were analyzed by spectrophotometry. DNA fragmentation was evaluated using the terminal dUTP nick end labeling assay. BSO and 1,25(OH)2D3 inhibited Caco-2 cell growth, an effect that was higher with the combined treatment. The antiproliferative effect produced by the combination could be protected by ascorbic acid. BSO plus 1,25(OH)2D3 induced cell cycle arrest and suppressed cell division. Total glutathione decreased and superoxide anion increased with BSO and BSO plus 1,25(OH)2D3. Catalase activity increased with the combined treatment. Mitochondrial membrane potential and alkaline phosphatase activity were altered by 1,25(OH)2D3 alone or plus BSO. The percentage of terminal dUTP nick end labeling-positive cells was increased. BSO increases the antiproliferative effect of 1,25(OH)2D3 on Caco-2 cells through induction of oxidative stress, which occurs simultaneously with DNA breakage. The antioxidant system can partially compensate the damage induced by BSO plus 1,25(OH)2D3. Cell differentiation induction is also involved in the response to the combined treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Buthionine Sulfoximine/pharmacology , Calcitriol/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Oxidative Stress/drug effects , Alkaline Phosphatase/metabolism , Caco-2 Cells , DNA Fragmentation/drug effects , Drug Synergism , Humans , Membrane Potential, Mitochondrial/drug effects
4.
Cancer Invest ; 30(8): 560-70, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22931489

ABSTRACT

Calcitriol or 1,25(OH)(2)D(3) is a negative growth regulator of breast cancer cells. The aim of this study was to determine whether L-buthionine-S,R-sulfoximine, a glutathione-depleting drug, modifies the antiproliferative effects of 1,25(OH)(2)D(3) on MCF-7 cells. For comparison, we included studies in MCF-7 cells selected for vitamin D resistance and in human mammary epithelial cells transformed with SV40 and ras. Our data indicate that L-buthionine-S,R-sulfoximine enhances the growth inhibition of 1,25(OH)(2)D(3) in all transformed breast cell lines. This effect is mediated by ROS leading to apoptosis. In conclusion, BSO alters redox state and sensitizes breast cancer cells to 1,25(OH)(2)D(3)-mediated apoptosis.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/metabolism , Buthionine Sulfoximine/pharmacology , Reactive Oxygen Species/metabolism , Vitamin D/analogs & derivatives , Caspases/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Enzyme Activation/drug effects , Female , Humans , Oxidation-Reduction/drug effects , Vitamin D/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL