Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 118, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38281030

ABSTRACT

Conifers are long-lived and slow-evolving, thus requiring effective defences against their fast-evolving insect natural enemies. The copy number variation (CNV) of two key acetophenone biosynthesis genes Ugt5/Ugt5b and ßglu-1 may provide a plausible mechanism underlying the constitutively variable defence in white spruce (Picea glauca) against its primary defoliator, spruce budworm. This study develops a long-insert sequence capture probe set (Picea_hung_p1.0) for quantifying copy number of ßglu-1-like, Ugt5-like genes and single-copy genes on 38 Norway spruce (Picea abies) and 40 P. glauca individuals from eight and nine provenances across Europe and North America respectively. We developed local assemblies (Piabi_c1.0 and Pigla_c.1.0), full-length transcriptomes (PIAB_v1 and PIGL_v1), and gene models to characterise the diversity of ßglu-1 and Ugt5 genes. We observed very large copy numbers of ßglu-1, with up to 381 copies in a single P. glauca individual. We observed among-provenance CNV of ßglu-1 in P. glauca but not P. abies. Ugt5b was predominantly single-copy in both species. This study generates critical hypotheses for testing the emergence and mechanism of extreme CNV, the dosage effect on phenotype, and the varying copy number of genes with the same pathway. We demonstrate new approaches to overcome experimental challenges in genomic research in conifer defences.


Subject(s)
Picea , Humans , Picea/genetics , Picea/metabolism , DNA Copy Number Variations , beta-Glucosidase/genetics , Genomics , Transcriptome
2.
Plant J ; 117(3): 766-785, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37960967

ABSTRACT

The plant-specialized metabolite montbretin A (MbA) is being developed as a new treatment option for type-2 diabetes, which is among the ten leading causes of premature death and disability worldwide. MbA is a complex acylated flavonoid glycoside produced in small amounts in below-ground organs of the perennial plant Montbretia (Crocosmia × crocosmiiflora). The lack of a scalable production system limits the development and potential application of MbA as a pharmaceutical or nutraceutical. Previous efforts to reconstruct montbretin biosynthesis in Nicotiana benthamiana (Nb) resulted in low yields of MbA and higher levels of montbretin B (MbB) and montbretin C (MbC). MbA, MbB, and MbC are nearly identical metabolites differing only in their acyl moieties, derived from caffeoyl-CoA, coumaroyl-CoA, and feruloyl-CoA, respectively. In contrast to MbA, MbB and MbC are not pharmaceutically active. To utilize the montbretia caffeoyl-CoA biosynthesis for improved MbA engineering in Nb, we cloned and characterized enzymes of the shikimate shunt of the general phenylpropanoid pathway, specifically hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (CcHCT), p-coumaroylshikimate 3'-hydroxylase (CcC3'H), and caffeoylshikimate esterase (CcCSE). Gene expression patterns suggest that CcCSE enables the predominant formation of MbA, relative to MbB and MbC, in montbretia. This observation is supported by results from in vitro characterization of CcCSE and reconstruction of the shikimate shunt in yeast. Using CcHCT together with montbretin biosynthetic genes in multigene constructs resulted in a 30-fold increase of MbA in Nb. This work advances our understanding of the phenylpropanoid pathway and features a critical step towards improved MbA production in bioengineered Nb.


Subject(s)
Flavones , Hypoglycemic Agents , Nicotiana , Trisaccharides , Hypoglycemic Agents/metabolism , Nicotiana/genetics , Shikimic Acid/metabolism , Plants/metabolism
3.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-37875130

ABSTRACT

Black spruce (Picea mariana [Mill.] B.S.P.) is a dominant conifer species in the North American boreal forest that plays important ecological and economic roles. Here, we present the first genome assembly of P. mariana with a reconstructed genome size of 18.3 Gbp and NG50 scaffold length of 36.0 kbp. A total of 66,332 protein-coding sequences were predicted in silico and annotated based on sequence homology. We analyzed the evolutionary relationships between P. mariana and 5 other spruces for which complete nuclear and organelle genome sequences were available. The phylogenetic tree estimated from mitochondrial genome sequences agrees with biogeography; specifically, P. mariana was strongly supported as a sister lineage to P. glauca and 3 other taxa found in western North America, followed by the European Picea abies. We obtained mixed topologies with weaker statistical support in phylogenetic trees estimated from nuclear and chloroplast genome sequences, indicative of ancient reticulate evolution affecting these 2 genomes. Clustering of protein-coding sequences from the 6 Picea taxa and 2 Pinus species resulted in 34,776 orthogroups, 560 of which appeared to be specific to P. mariana. Analysis of these specific orthogroups and dN/dS analysis of positive selection signatures for 497 single-copy orthogroups identified gene functions mostly related to plant development and stress response. The P. mariana genome assembly and annotation provides a valuable resource for forest genetics research and applications in this broadly distributed species, especially in relation to climate adaptation.


Subject(s)
Picea , Phylogeny , Picea/genetics , North America
4.
BMC Genomics ; 24(1): 390, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37430186

ABSTRACT

BACKGROUND: The mountain pine beetle, Dendroctonus ponderosae, is an irruptive bark beetle that causes extensive mortality to many pine species within the forests of western North America. Driven by climate change and wildfire suppression, a recent mountain pine beetle (MPB) outbreak has spread across more than 18 million hectares, including areas to the east of the Rocky Mountains that comprise populations and species of pines not previously affected. Despite its impacts, there are few tactics available to control MPB populations. Beauveria bassiana is an entomopathogenic fungus used as a biological agent in agriculture and forestry and has potential as a management tactic for the mountain pine beetle population. This work investigates the phenotypic and genomic variation between B. bassiana strains to identify optimal strains against a specific insect. RESULTS: Using comparative genome and transcriptome analyses of eight B. bassiana isolates, we have identified the genetic basis of virulence, which includes oosporein production. Genes unique to the more virulent strains included functions in biosynthesis of mycotoxins, membrane transporters, and transcription factors. Significant differential expression of genes related to virulence, transmembrane transport, and stress response was identified between the different strains, as well as up to nine-fold upregulation of genes involved in the biosynthesis of oosporein. Differential correlation analysis revealed transcription factors that may be involved in regulating oosporein production. CONCLUSION: This study provides a foundation for the selection and/or engineering of the most effective strain of B. bassiana for the biological control of mountain pine beetle and other insect pests populations.


Subject(s)
Beauveria , Coleoptera , Animals , Beauveria/genetics , Virulence/genetics , Genomics
5.
J Agric Food Chem ; 71(21): 8121-8128, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37200203

ABSTRACT

Vaccinium corymbosum (highbush blueberry) in British Columbia relies on honeybee pollination for a reliable fruit set. As floral volatiles may help explain pollinator preference for blueberry, we surveyed components of variation for volatiles using gas chromatography-mass spectrometry (GC/MS). Principal component analysis of GC chromatogram peaks revealed a grouping of cultivars by a biosynthetic pathway that also corresponds with their known pedigree. To identify genetic variance, we identified 34 chemicals with adequate sample sizes. We estimated "natural heritability" (using uncontrolled crosses in natural environments) in two ways: (1) as "clonal repeatability," which is equivalent to broad-sense heritability and is an upper bound for narrow-sense heritability, and (2) "marker-based heritability," which serves as a lower bound for narrow-sense heritability. Both methods indicate that heritability is relatively low, ca. 15%, and variable among traits. This is expected as the floral volatile release is changeable and dependent on environmental conditions. It might be possible to use highly heritable volatiles for breeding.


Subject(s)
Blueberry Plants , Animals , Bees/genetics , Blueberry Plants/genetics , Blueberry Plants/chemistry , Plant Breeding , Pollination , Phenotype , Gas Chromatography-Mass Spectrometry
6.
Evol Appl ; 16(3): 673-687, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36969136

ABSTRACT

Western redcedar (WRC; Thuja plicata) is a conifer of the Pacific Northwest of North America prized for its durable and rot-resistant wood. WRC has naturally low outcrossing rates and readily self-fertilizes in nature. Challenges faced in WRC breeding and propagation involve selecting trees for accelerated growth while also ensuring enhanced heartwood rot resistance and resistance to ungulate browsing, as well as mitigating potential effects of inbreeding depression. Terpenes, a large and diverse class of specialized metabolites, confer both rot and browse resistance in the wood and foliage of WRC, respectively. Using a Bayesian modelling approach, we isolated single nucleotide polymorphism (SNP) markers estimated to be associated with three different foliar terpene traits and four different heartwood terpene traits, as well as two growth traits. We found that all traits were complex, being associated with between 1700 and 3600 SNPs linked with putatively causal loci, with significant polygenic components. Growth traits tended to have a larger polygenic component while terpene traits had larger major gene components; SNPs with small or polygenic effect were spread across the genome, while larger-effect SNPs tended to be localized to specific linkage groups. To determine whether there was inbreeding depression for terpene chemistry or growth traits, we used mixed linear models for a genomic selection training population to estimate the effect of the inbreeding coefficient F on foliar terpenes, heartwood terpenes and several growth and dendrochronological traits. We did not find significant inbreeding depression for any assessed trait. We further assessed inbreeding depression across four generations of complete selfing and found that not only was inbreeding depression not significant but that selection for height growth was the only significant predictor for growth during selfing, suggesting that inbreeding depression due to selfing during operational breeding can be mitigated by increased selection intensity.

7.
ACS Chem Biol ; 18(2): 356-366, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36728836

ABSTRACT

Diet-derived polysaccharides are an important carbon source for gut bacteria and shape the human gut microbiome. Acarbose, a compound used clinically to treat type 2 diabetes, is known to inhibit the growth of some bacteria on starches based on its activity as an inhibitor of α-glucosidases and α-amylases. In contrast to acarbose, montbretin A, a new drug candidate for the treatment of type 2 diabetes, has been reported to be more specific for the inhibition of α-amylase, notably human pancreatic α-amylase. However, the effects of both molecules on glycan metabolism across a larger diversity of human gut bacteria remain to be characterized. Here, we used ex vivo metabolic labeling of a human microbiota sample with fluorescent maltodextrin to identify gut bacteria affected by amylase inhibitors. Metabolic labeling was performed in the presence and absence of amylase inhibitors, and the fluorescently labeled bacteria were identified by fluorescence-activated cell sorting coupled with 16S rDNA amplicon sequencing. We validated the labeling results in cultured isolates and identified four gut bacteria species whose metabolism of maltodextrin is inhibited by acarbose. In contrast, montbretin A slowed the growth of only one species, supporting the fact that it is more selective. Metabolic labeling is a valuable tool to characterize glycan metabolism in microbiota samples and could help understand the untargeted impact of drugs on the human gut microbiota.


Subject(s)
Acarbose , Diabetes Mellitus, Type 2 , Humans , Acarbose/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/metabolism , Polysaccharides/metabolism , Amylases/pharmacology , Bacteria/metabolism
8.
Evol Appl ; 15(8): 1291-1312, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36051463

ABSTRACT

Western redcedar (WRC) is an ecologically and economically important forest tree species characterized by low genetic diversity with high self-compatibility and high heartwood durability. Using sequence capture genotyping of target genic and non-genic regions, we genotyped 44 parent trees and 1520 offspring trees representing 26 polycross (PX) families collected from three progeny test sites using 45,378 SNPs. Trees were phenotyped for eight traits related to growth, heartwood and foliar chemistry associated with wood durability and deer browse resistance. We used the genomic realized relationship matrix for paternity assignment, maternal pedigree correction, and to estimate genetic parameters. We compared genomics-based (GBLUP) and two pedigree-based (ABLUP: polycross and reconstructed full-sib [FS] pedigrees) models. Models were extended to estimate dominance genetic effects. Pedigree reconstruction revealed significant unequal male contribution and separated the 26 PX families into 438 FS families. Traditional maternal PX pedigree analysis resulted in up to 51% overestimation in genetic gain and 44% in diversity. Genomic analysis resulted in up to 22% improvement in offspring breeding value (BV) theoretical accuracy, 35% increase in expected genetic gain for forward selection, and doubled selection intensity for backward selection. Overall, all traits showed low to moderate heritability (0.09-0.28), moderate genotype by environment interaction (type-B genetic correlation: 0.51-0.80), low to high expected genetic gain (6.01%-55%), and no significant negative genetic correlation reflecting no large trade-offs for multi-trait selection. Only three traits showed a significant dominance effect. GBLUP resulted in smaller but more accurate heritability estimates for five traits, but larger estimates for the wood traits. Comparison between all, genic-coding, genic-non-coding and intergenic SNPs showed little difference in genetic estimates. In summary, we show that GBLUP overcomes the PX limitations, successfully captures expected historical and hidden relatedness as well as linkage disequilibrium (LD), and results in increased breeding efficiency in WRC.

9.
Genome Res ; 32(10): 1952-1964, 2022 10.
Article in English | MEDLINE | ID: mdl-36109148

ABSTRACT

We assembled the 9.8-Gbp genome of western redcedar (WRC; Thuja plicata), an ecologically and economically important conifer species of the Cupressaceae. The genome assembly, derived from a uniquely inbred tree produced through five generations of self-fertilization (selfing), was determined to be 86% complete by BUSCO analysis, one of the most complete genome assemblies for a conifer. Population genomic analysis revealed WRC to be one of the most genetically depauperate wild plant species, with an effective population size of approximately 300 and no significant genetic differentiation across its geographic range. Nucleotide diversity, π, is low for a continuous tree species, with many loci showing zero diversity, and the ratio of π at zero- to fourfold degenerate sites is relatively high (approximately 0.33), suggestive of weak purifying selection. Using an array of genetic lines derived from up to five generations of selfing, we explored the relationship between genetic diversity and mating system. Although overall heterozygosity was found to decline faster than expected during selfing, heterozygosity persisted at many loci, and nearly 100 loci were found to deviate from expectations of genetic drift, suggestive of associative overdominance. Nonreference alleles at such loci often harbor deleterious mutations and are rare in natural populations, implying that balanced polymorphisms are maintained by linkage to dominant beneficial alleles. This may account for how WRC remains responsive to natural and artificial selection, despite low genetic diversity.


Subject(s)
Tracheophyta , Tracheophyta/genetics , Self-Fertilization/genetics , Alleles , Heterozygote , Polymorphism, Genetic , Genetic Variation , Selection, Genetic
10.
Plant J ; 111(5): 1469-1485, 2022 09.
Article in English | MEDLINE | ID: mdl-35789009

ABSTRACT

Spruces (Picea spp.) are coniferous trees widespread in boreal and mountainous forests of the northern hemisphere, with large economic significance and enormous contributions to global carbon sequestration. Spruces harbor very large genomes with high repetitiveness, hampering their comparative analysis. Here, we present and compare the genomes of four different North American spruces: the genome assemblies for Engelmann spruce (Picea engelmannii) and Sitka spruce (Picea sitchensis) together with improved and more contiguous genome assemblies for white spruce (Picea glauca) and for a naturally occurring introgress of these three species known as interior spruce (P. engelmannii × glauca × sitchensis). The genomes were structurally similar, and a large part of scaffolds could be anchored to a genetic map. The composition of the interior spruce genome indicated asymmetric contributions from the three ancestral genomes. Phylogenetic analysis of the nuclear and organelle genomes revealed a topology indicative of ancient reticulation. Different patterns of expansion of gene families among genomes were observed and related with presumed diversifying ecological adaptations. We identified rapidly evolving genes that harbored high rates of non-synonymous polymorphisms relative to synonymous ones, indicative of positive selection and its hitchhiking effects. These gene sets were mostly distinct between the genomes of ecologically contrasted species, and signatures of convergent balancing selection were detected. Stress and stimulus response was identified as the most frequent function assigned to expanding gene families and rapidly evolving genes. These two aspects of genomic evolution were complementary in their contribution to divergent evolution of presumed adaptive nature. These more contiguous spruce giga-genome sequences should strengthen our understanding of conifer genome structure and evolution, as their comparison offers clues into the genetic basis of adaptation and ecology of conifers at the genomic level. They will also provide tools to better monitor natural genetic diversity and improve the management of conifer forests. The genomes of four closely related North American spruces indicate that their high similarity at the morphological level is paralleled by the high conservation of their physical genome structure. Yet, the evidence of divergent evolution is apparent in their rapidly evolving genomes, supported by differential expansion of key gene families and large sets of genes under positive selection, largely in relation to stimulus and environmental stress response.


Subject(s)
Picea , Tracheophyta , Expressed Sequence Tags , Genome, Plant/genetics , Multigene Family/genetics , Phylogeny , Picea/genetics , Tracheophyta/genetics
12.
Annu Rev Plant Biol ; 73: 475-494, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35130442

ABSTRACT

The mountain pine beetle epidemic has highlighted the complex interactions of bark beetles with conifer host defenses. In these interactions, oleoresin terpenoids and volatiles, produced and released by the host tree, can be both harmful and beneficial to the beetle's success in colonizing a tree and completing its life cycle. The insect spends almost its entire life, from egg to adult, within the bark and phloem of a pine host, exposed to large quantities of complex mixtures of oleoresin terpenoids. Conifer oleoresin comprises mostly monoterpenes and diterpene resin acids as well as many different sesquiterpenes. It functions as a major chemical and physical defense system. However, the insect has evolved host colonization behavior and enzymes for terpenoid metabolism and detoxification that allow it to overcome some of the terpenoid defenses and, importantly, to co-opt pine monoterpenes as cues for host search and as a precursor for its own pheromone system. The insect-associated microbiome also plays a role in the metabolism of conifer terpenoids.


Subject(s)
Coleoptera , Pinus , Tracheophyta , Animals , Coleoptera/metabolism , Monoterpenes/metabolism , Pheromones/metabolism , Pinus/metabolism , Terpenes/metabolism , Tracheophyta/metabolism
13.
PLoS One ; 16(10): e0257478, 2021.
Article in English | MEDLINE | ID: mdl-34618820

ABSTRACT

BACKGROUND: Montbretins are rare specialized metabolites found in montbretia (Crocosmia x crocosmiiflora) corms. Montbretin A (MbA) is of particular interest as a novel therapeutic for type-2 diabetes and obesity. There is no scalable production system for this complex acylated flavonol glycoside. MbA biosynthesis has been reconstructed in Nicotiana benthamiana using montbretia genes for the assembly of MbA from its various different building blocks. However, in addition to smaller amounts of MbA, the therapeutically inactive montbretin B (MbB) was the major product of this metabolic engineering effort. MbA and MbB differ in a single hydroxyl group of their acyl side chains, which are derived from caffeoyl-CoA and coumaroyl-CoA, respectively. Biosynthesis of both MbA and MbB also require coumaroyl-CoA for the formation of the myricetin core. Caffeoyl-CoA and coumaroyl-CoA are formed in the central phenylpropanoid pathway by acyl activating enzymes (AAEs) known as 4-coumaroyl-CoA ligases (4CLs). Here we investigated a small family of montbretia AAEs and 4CLs, and their possible contribution to montbretin biosynthesis. RESULTS: Transcriptome analysis for gene expression patterns related to montbretin biosynthesis identified eight different montbretia AAEs belonging to four different clades. Enzyme characterization identified 4CL activity for two clade IV members, Cc4CL1 and Cc4CL2, converting different hydroxycinnamic acids into the corresponding CoA thioesters. Both enzymes preferred coumaric acid over caffeic acid as a substrate in vitro. While expression of montbretia AAEs did not enhance MbA biosynthesis in N. benthamiana, we demonstrated that both Cc4CLs can be used to activate coumaric and caffeic acid towards flavanone biosynthesis in yeast (Saccharomyces cerevisiae). CONCLUSIONS: Montbretia expresses two functional 4CLs, but neither of them is specific for the formation of caffeoyl-CoA. Based on differential expression analysis and phylogeny Cc4CL1 is most likely involved in MbA biosynthesis, while Cc4CL2 may contribute to lignin biosynthesis. Both Cc4CLs can be used for flavanone production to support metabolic engineering of MbA in yeast.


Subject(s)
Acyl Coenzyme A/metabolism , Flavones/metabolism , Hypoglycemic Agents/metabolism , Iridaceae/metabolism , Ligases/metabolism , Plant Proteins/metabolism , Trisaccharides/metabolism , Acyl Coenzyme A/genetics , Biosynthetic Pathways , Flavones/genetics , Gene Expression Regulation, Plant , Genetic Engineering , Iridaceae/genetics , Ligases/genetics , Metabolic Engineering , Plant Proteins/genetics , Nicotiana/genetics , Nicotiana/metabolism , Trisaccharides/genetics
14.
Appl Microbiol Biotechnol ; 105(6): 2541-2557, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33590267

ABSTRACT

The mountain pine beetle, Dendroctonus ponderosae, has infested over ~16 Mha of pine forests in British Columbia killing >50% of mature lodgepole pine, Pinus contorta, trees in affected stands. At present, it is functionally an invasive species in Alberta, killing and reproducing in evolutionarily naïve populations of lodgepole pine (P. contorta), novel jack pine (P. banksiana), and their hybrids. The entomopathogenic fungus Beauveria bassiana has shown some potential as a biocontrol agent of several bark beetle species. In this study, nine isolates of B. bassiana were examined for insect virulence characteristics, including conidiation rate, pigmentation, and infection rate in laboratory-reared D. ponderosae, to assess for their potential as biocontrol agents. The strains were categorized into three phenotypic groups based on pigmentation, conidial density, and myceliation rate. Virulence screening utilizing insect-based agar medium (D. ponderosae and European honeybee Apis mellifera carcasses) revealed no difference in selection of fungal growth. However, infection studies on D. ponderosae and A. mellifera showed contrasting results. In vivo A. mellifera infection model revealed ~5% mortality, representing the natural death rate of the hive population, whereas laboratory-reared D. ponderosae showed 100% mortality and mycosis. The LT50 (median lethal time 50) ranges from 2 to 5 ± 0.33 days, and LT100 ranges from 4 to 6 ± 0.5 days. We discuss the selective advantages of the three phenotypic groups in terms of virulence, pigmentation, conidial abundance, and tolerance to abiotic factors like UV and host tree monoterpenes. These results can further provide insights into the development of several phenotypically diverse B. bassiana strains in controlling the spread of the invasive D. ponderosae in Western Canada. KEY POINTS: • Three B. bassiana morphotype groups have been demonstrated to kill D. ponderosae. • A range of effective lethal times (LT50 and LT100) was established against D. ponderosae. • Variable tolerance to UV light and pine monoterpenes were observed in B. bassiana.


Subject(s)
Beauveria , Coleoptera , Pinus , Weevils , Animals , British Columbia
15.
Evol Appl ; 13(10): 2704-2722, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33294018

ABSTRACT

With climate change, the pressure on tree breeding to provide varieties with improved resilience to biotic and abiotic stress is increasing. As such, pest resistance is of high priority but has been neglected in most tree breeding programs, given the complexity of phenotyping for these traits and delays to assess mature trees. In addition, the existing genetic variation of resistance and its relationship with productivity should be better understood for their consideration in multitrait breeding. In this study, we evaluated the prospects for genetic improvement of the levels of acetophenone aglycones (AAs) in white spruce needles, which have been shown to be tightly linked to resistance to spruce budworm. Furthermore, we estimated the accuracy of genomic selection (GS) for these traits, allowing selection at a very early stage to accelerate breeding. A total of 1,516 progeny trees established on five sites and belonging to 136 full-sib families from a mature breeding population in New Brunswick were measured for height growth and genotyped for 4,148 high-quality SNPs belonging to as many genes along the white spruce genome. In addition, 598 trees were assessed for levels of AAs piceol and pungenol in needles, and 578 for wood stiffness. GS models were developed with the phenotyped trees and then applied to predict the trait values of unphenotyped trees. AAs were under moderate-to-high genetic control (h 2: 0.43-0.57) with null or marginally negative genetic correlations with other traits. The prediction accuracy of GS models (GBLUP) for AAs was high (PAAC: 0.63-0.67) and comparable or slightly higher than pedigree-based (ABLUP) or BayesCπ models. We show that AA traits can be improved and that GS speeds up the selection of improved trees for insect resistance and for growth and wood quality traits. Various selection strategies were tested to optimize multitrait gains.

16.
Microbiol Resour Announc ; 9(39)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32972944

ABSTRACT

Here, we present the chloroplast genome sequence of black spruce (Picea mariana), a conifer widely distributed throughout North American boreal forests. This complete and annotated chloroplast sequence is 123,961 bp long and will contribute to future studies on the genetic basis of evolutionary change in spruce and adaptation in conifers.

17.
Plant Physiol ; 184(1): 97-109, 2020 09.
Article in English | MEDLINE | ID: mdl-32647038

ABSTRACT

Diabetes and obesity are affecting human health worldwide. Their occurrence is increasing with lifestyle choices, globalization of food systems, and economic development. The specialized plant metabolite montbretin A (MbA) is being developed as an antidiabetes and antiobesity treatment due to its potent and specific inhibition of the human pancreatic α-amylase. MbA is a complex acylated flavonol glycoside formed in small amounts in montbretia (Crocosmia × crocosmiiflora) corms during the early summer. The spatial and temporal patterns of MbA accumulation limit its supply for drug development and application. We are exploring MbA biosynthesis to enable metabolic engineering of this rare and valuable compound. Genes and enzymes for the first four steps of MbA biosynthesis, starting from the flavonol precursor myricetin, have recently been identified. Here, we describe the gene discovery and functional characterization of the final two enzymes of MbA biosynthesis. The UDP-glycosyltransferases, CcUGT4 and CcUGT5, catalyze consecutive reactions in the formation of the disaccharide moiety at the 4'-hydroxy position of the MbA flavonol core. CcUGT4 is a flavonol glycoside 4'-O-xylosyltransferase that acts on the second to last intermediate (MbA-XR2) in the pathway. CcUGT5 is a flavonol glycoside 1,4-rhamnosyltransferase that converts the final intermediate (MbA-R2) to complete the MbA molecule. Both enzymes belong to the UGT family d-clade and are specific for flavonol glycosides and their respective sugar donors. This study concludes the discovery of the MbA biosynthetic pathway and provides the complete set of genes to engineer MbA biosynthesis. We demonstrate successful reconstruction of MbA biosynthesis in Nicotiana benthamiana.


Subject(s)
Flavones/metabolism , Trisaccharides/metabolism , Biosynthetic Pathways , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism
18.
Sci Rep ; 10(1): 12464, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32719384

ABSTRACT

Glandular trichomes (GTs) are defensive structures that produce and accumulate specialized metabolites and protect plants against herbivores, pathogens, and abiotic stress. GTs have been extensively studied in angiosperms for their roles in defense and biosynthesis of high-value metabolites. In contrast, trichomes of gymnosperms have been described in fossilized samples, but have not been studied in living plants. Here, we describe the characterization of GTs on young stems of a hybrid white spruce. Metabolite and histological analysis of spruce GTs support a glandular function with accumulation of a diverse array of mono-, sesqui- and diterpenes including diterpene methylesters. Methylated diterpenes have previously been associated with insect resistance in white spruce. Headspeace analysis of spruce GTs showed a profile of volatiles dominated by monoterpenes and a highly diverse array of sesquiterpenes. Spruce GTs appear early during shoot growth, prior to the development of a lignified bark and prior to accumulation of terpenes in needles. Spruce GTs may provide an early, terpene-based chemical defense system at a developmental stage when young shoots are particularly vulnerable to foliage and shoot feeding insects, and before the resin duct system characteristic of conifers has fully developed.


Subject(s)
Terpenes/chemistry , Tracheophyta/chemistry , Trichomes/chemistry , Animals , Cycadopsida/anatomy & histology , Cycadopsida/chemistry , Cycadopsida/growth & development , Cycadopsida/immunology , Insecta/physiology , Terpenes/immunology , Tracheophyta/anatomy & histology , Tracheophyta/growth & development , Tracheophyta/immunology , Trichomes/anatomy & histology , Trichomes/growth & development , Trichomes/immunology
19.
Genome Biol Evol ; 12(7): 1174-1179, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32449750

ABSTRACT

Plant mitochondrial genomes vary widely in size. Although many plant mitochondrial genomes have been sequenced and assembled, the vast majority are of angiosperms, and few are of gymnosperms. Most plant mitochondrial genomes are smaller than a megabase, with a few notable exceptions. We have sequenced and assembled the complete 5.5-Mb mitochondrial genome of Sitka spruce (Picea sitchensis), to date, one of the largest mitochondrial genomes of a gymnosperm. We sequenced the whole genome using Oxford Nanopore MinION, and then identified contigs of mitochondrial origin assembled from these long reads based on sequence homology to the white spruce mitochondrial genome. The assembly graph shows a multipartite genome structure, composed of one smaller 168-kb circular segment of DNA, and a larger 5.4-Mb single component with a branching structure. The assembly graph gives insight into a putative complex physical genome structure, and its branching points may represent active sites of recombination.


Subject(s)
Genome, Mitochondrial , Genome, Plant , Picea/genetics , Molecular Structure
20.
Evol Appl ; 13(1): 62-75, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31892944

ABSTRACT

We review a recently discovered white spruce (Picea glauca) chemical defense against spruce budworm (Choristoneura fumiferana) involving hydroxyacetophenones. These defense metabolites detected in the foliage accumulate variably as the aglycons, piceol and pungenol, or the corresponding glucosides, picein and pungenin. We summarize current knowledge of the genetic, genomic, molecular, and biochemical underpinnings of this defense and its effects on C. fumiferana. We present an update with new results on the ontogenic variation and the phenological window of this defense, including analysis of transcript responses in P. glauca to C. fumiferana herbivory. We also discuss this chemical defense from an evolutionary and a breeding context.

SELECTION OF CITATIONS
SEARCH DETAIL
...