Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Biochem Soc Trans ; 51(4): 1533-1543, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37646476

ABSTRACT

The cannabinoid receptors CB1 and CB2 mediate a variety of physiological processes and continue to be explored as desirable drug targets. Both receptors are activated by the endogenous endocannabinoids and the psychoactive components of marijuana. Over the years, many efforts have been made to make selective ligands; however, the high degree of homology between cannabinoid receptor subtypes introduces challenges in studying either receptor in isolation. Recent advancements in structure biology have resulted in a surge of high-resolution structures, enriching our knowledge and understanding of receptor structure and function. In this review, of recent cannabinoid receptor structures, key features of the inactive and active state CB1 and CB2 are presented. These structures will provide additional insight into the modulation and signaling mechanism of cannabinoid receptors CB1 and CB2 and aid in the development of future therapeutics.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Drug Delivery Systems , Endocannabinoids , Receptors, Cannabinoid
2.
ACS Cent Sci ; 9(8): 1567-1574, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37637743

ABSTRACT

The salvinorins serve as templates for next generation analgesics, antipruritics, and dissociative hallucinogens via selective and potent agonism of the kappa-opioid receptor (KOR). In contrast to most opioids, the salvinorins lack basic amines and bind with high affinity and selectivity via complex polyoxygenated scaffolds that have frustrated deep-seated modification by synthesis. Here we describe a short asymmetric synthesis that relies on a sterically confined organocatalyst to dissociate acidity from reactivity and effect Robinson annulation of an unactivated nucleophile/unstable electrophile pair. Combined with a cobalt-catalyzed polarized diene-alkyne cycloaddition, the route allows divergent access to a focused library of salvinorins. We appraise the synthesis by its generation of multiple analogs that exceed the potency, selectivity, stability, and functional bias of salvinorin A itself.

3.
Biomolecules ; 13(6)2023 06 02.
Article in English | MEDLINE | ID: mdl-37371516

ABSTRACT

Opioid analgesics such as morphine and fentanyl induce mu-opioid receptor (MOR)-mediated hyperactivity in mice. Herein, we show that morphine, fentanyl, SR-17018, and oliceridine have submaximal intrinsic efficacy in the mouse striatum using 35S-GTPγS binding assays. While all of the agonists act as partial agonists for stimulating G protein coupling in striatum, morphine, fentanyl, and oliceridine are fully efficacious in stimulating locomotor activity; meanwhile, the noncompetitive biased agonists SR-17018 and SR-15099 produce submaximal hyperactivity. Moreover, the combination of SR-17018 and morphine attenuates hyperactivity while antinociceptive efficacy is increased. The combination of oliceridine with morphine increases hyperactivity, which is maintained over time. These findings provide evidence that noncompetitive agonists at MOR can be used to suppress morphine-induced hyperactivity while enhancing antinociceptive efficacy; moreover, they demonstrate that intrinsic efficacy measured at the receptor level is not directly proportional to drug efficacy in the locomotor activity assay.


Subject(s)
Morphine , Spiro Compounds , Mice , Animals , Morphine/pharmacology , Analgesics, Opioid/pharmacology , Fentanyl/pharmacology
4.
ACS Cent Sci ; 8(7): 948-954, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35912357

ABSTRACT

The fungal metabolite collybolide has attracted attention as a non-nitrogenous, potent, and biased agonist of the kappa-opioid receptor (KOR). Here, we report a 10-step asymmetric synthesis of this complex sesquiterpene that enables facile access to either enantiomer. The synthesis relies on a diastereoselective α-benzoyloxylation to install the buried C6 benzoate and avoid irreversible translactonization of the congested, functionally dense core. Neither enantiomer, however, exhibited KOR agonism, indicating that collybolide has been mischaracterized as a KOR agonist. Given the pharmaceutical, medical, and societal interest in collybolide as a next-generation antipruritic and analgesic, this refutation of KOR activity has important ramifications for ongoing studies. Classification of collybolide as a new non-nitrogenous, KOR-selective, potent agonist with the same clinical potential as salvinorin A seems to have been premature.

5.
ACS Chem Neurosci ; 13(8): 1315-1332, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35410469

ABSTRACT

Focused modification of a sulfonamide-based kappa opioid receptor (KOR) antagonist series previously reported by this laboratory was investigated. A total of 32 analogues were prepared to explore linker replacement, constraint manipulation, and aryl group or amine substitution. All analogues were assayed for KOR antagonist activity, and the initial lead compound was assessed for in vivo CNS penetration. The most improved analogue possessed a 4-fold increase of potency (IC50 = 18.9 ± 4.4 nM) compared with the lead compound (IC50 = 83.5 ± 20 nM) from an earlier work. The initial lead compound was found to attain suitable brain levels and to possess a shorter clearance time than canonical KOR antagonists such as JDTic.


Subject(s)
Receptors, Opioid, kappa , Tetrahydroisoquinolines , Narcotic Antagonists/chemistry , Narcotic Antagonists/pharmacology , Sulfonamides/pharmacology , Tetrahydroisoquinolines/chemistry
6.
Br J Pharmacol ; 179(14): 3651-3674, 2022 07.
Article in English | MEDLINE | ID: mdl-35106752

ABSTRACT

GPCRs modulate a plethora of physiological processes and mediate the effects of one-third of FDA-approved drugs. Depending on which ligand activates a receptor, it can engage different intracellular transducers. This 'biased signalling' paradigm requires that we now characterize physiological signalling not just by receptors but by ligand-receptor pairs. Ligands eliciting biased signalling may constitute better drugs with higher efficacy and fewer adverse effects. However, ligand bias is very complex, making reproducibility and description challenging. Here, we provide guidelines and terminology for any scientists to design and report ligand bias experiments. The guidelines will aid consistency and clarity, as the basic receptor research and drug discovery communities continue to advance our understanding and exploitation of ligand bias. Scientific insight, biosensors, and analytical methods are still evolving and should benefit from and contribute to the implementation of the guidelines, together improving translation from in vitro to disease-relevant in vivo models.


Subject(s)
Receptors, G-Protein-Coupled , Signal Transduction , Drug Discovery , Ligands , Reproducibility of Results
7.
Eur J Med Chem ; 230: 114027, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35051750

ABSTRACT

In earlier work, we explored the SAR for the C3 side chain pharmacophore in the hexahydrocannabinol template represented by the drug nabilone, which resulted in the development of AM2389. In an effort for further optimization, we have merged features of nabilone and AM2389 and explored the C3 side chain with varying chain lengths and terminal substitutions. Of the compounds described here, a nabilone analog, AM8936, with the C6'-cyano-substituted side chain, was identified as the most successful analog capable of serving as a potential candidate for further development and a valuable tool for further in vivo studies. AM8936 behaved as a balanced and potent CB1 agonist in functional assays and was a potent and efficacious CB1 agonist in vivo. Our SAR studies are highlighted with the docking of AM8936 on the crystal structure of the hCB1 receptor.


Subject(s)
Dronabinol , Receptor, Cannabinoid, CB1 , Dronabinol/analogs & derivatives , Dronabinol/pharmacology , Receptor, Cannabinoid, CB1/agonists , Structure-Activity Relationship
8.
Biochemistry ; 61(18): 1923-1935, 2022 09 20.
Article in English | MEDLINE | ID: mdl-34468132

ABSTRACT

In a recent report in Science Signaling (Gillis, A., et al. Low intrinsic efficacy for G protein activation can explain the improved side effect profiles of new opioid agonists. Sci. Signaling 2020, 13, eaaz3140 10.1126/scisignal.aaz3140), it was suggested that low intrinsic agonism, and not biased agonism, leads to an improvement in the separation of potency in opioid-induced respiratory suppression versus antinociception. Although many of the compounds that were tested have been shown to display G protein signaling bias in prior publications, the authors conclude that because they cannot detect biased agonism in their cellular signaling studies the compounds are therefore not biased agonists. Rather, they conclude that it is low intrinsic efficacy that leads to the therapeutic window improvement. Intrinsic efficacy is the extent to which an agonist can stimulate a G protein-coupled receptor response in a system, while biased agonism takes into consideration not only the intrinsic efficacy but also the potency of an agonist in an assay. Herein, we have reanalyzed the data presented in the published work (10.1126/scisignal.aaz3140) [including the recent Erratum (10.1126/scisignal.abf9803)] to derive intrinsic efficacy and bias factors as ΔΔlog(τ/KA) and ΔΔlog(Emax/EC50), respectively. On the basis of this reanalysis, the data support the conclusion that biased agonism, favoring G protein signaling, was observed. Moreover, a conservation of rank order intrinsic efficacy was not observed upon comparing responses in each assay, further suggesting that multiple active receptor states were present. These observations agree with prior studies in which oliceridine, PZM21, and SR-17018 were first described as biased agonists with improvement in antinociception over respiratory suppression in mice. Therefore, the data in the Science Signaling paper provide strong corroborating evidence that G protein signaling bias may be a means of improving opioid analgesia while avoiding certain undesirable side effects.


Subject(s)
Analgesics, Opioid , Receptors, G-Protein-Coupled , Analgesics, Opioid/adverse effects , Animals , Benzimidazoles , GTP-Binding Proteins/metabolism , Mice , Piperidines , Receptors, G-Protein-Coupled/metabolism , Receptors, Opioid, mu/agonists , Signal Transduction
9.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: mdl-34819362

ABSTRACT

The ability of a ligand to preferentially promote engagement of one signaling pathway over another downstream of GPCR activation has been referred to as signaling bias, functional selectivity, and biased agonism. The presentation of ligand bias reflects selectivity between active states of the receptor, which may result in the display of preferential engagement with one signaling pathway over another. In this study, we provide evidence that the G protein-biased mu opioid receptor (MOR) agonists SR-17018 and SR-14968 stabilize the MOR in a wash-resistant yet antagonist-reversible G protein-signaling state. Furthermore, we demonstrate that these structurally related biased agonists are noncompetitive for radiolabeled MOR antagonist binding, and while they stimulate G protein signaling in mouse brains, partial agonists of this class do not compete with full agonist activation. Importantly, opioid antagonists can readily reverse their effects in vivo. Given that chronic treatment with SR-17018 does not lead to tolerance in several mouse pain models, this feature may be desirable for the development of long-lasting opioid analgesics that remain sensitive to antagonist reversal of respiratory suppression.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Receptors, Opioid, mu/metabolism , Signal Transduction/drug effects , Analgesics, Opioid/pharmacology , Animals , Benzimidazoles/pharmacology , GTP-Binding Proteins/metabolism , Ligands , Male , Mice , Mice, Inbred C57BL , Narcotic Antagonists/pharmacology , Piperidines/pharmacology , Receptors, G-Protein-Coupled/physiology , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/physiology , Signal Transduction/physiology , beta-Arrestin 2/metabolism
10.
J Am Chem Soc ; 143(40): 16320-16325, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34596399

ABSTRACT

Due to the lack of genetically encoded probes for fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR), its utility for probing eukaryotic membrane protein dynamics is limited. Here we report an efficient method for the genetic incorporation of an unnatural amino acid (UAA), 3'-trifluoromenthyl-phenylalanine (mtfF), into cannabinoid receptor 1 (CB1) in the Baculovirus Expression System. The probe can be inserted at any environmentally sensitive site, while causing minimal structural perturbation to the target protein. Using 19F NMR and X-ray crystallography methods, we discovered that the allosteric modulator Org27569 and agonists synergistically stabilize a previously unrecognized pre-active state. An allosteric modulation model is proposed to explain Org27569's distinct behavior. We demonstrate that our site-specific 19F NMR labeling method is a powerful tool in decoding the mechanism of GPCR allosteric modulation. This new method should be broadly applicable for uncovering conformational states for many important eukaryotic membrane proteins.


Subject(s)
Indoles , Piperidines
11.
Behav Pharmacol ; 32(5): 453-458, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33883450

ABSTRACT

G-protein-biased mu-opioid receptor (GPB-MOR) agonists are an emerging class of compounds being evaluated as candidate analgesics and agonist medications for opioid use disorder. Most of the basic pharmacology of GPB-MOR agonists has been conducted in rodents and much less is known how the basic behavioral pharmacology of these compounds translates to nonhuman primates. The present study determined the antinociceptive potency and time course of three putative GPB-MOR agonists: (+)-oliceridine (i.e. TRV130), SR14968, and SR17018 in male rhesus monkeys (n = 3). In addition, the respiratory effects of these compounds were also indirectly determined using a pulse oximeter to measure percent peripheral oxygen saturation (%SpO2). The largest intramuscular oliceridine dose (3.2 mg/kg) produced significant antinociception at 50°C, but not 54°C, and peak effects were between 10 and 30 min. Oliceridine also decreased SpO2 below the 90% threshold that would be clinically categorized as hypoxia in two out of three monkeys. The largest intramuscular SR14968 dose (0.32 mg/kg) produced 100% MPE at 50°C, but not 54°C, in two out of three monkeys, and peak effects were between 30 and 100 min. The largest intravenous SR17018 dose (1 mg/kg) produced 100% MPE at 50°C, but not 54°C, in the same two out of three monkeys, and peak effects were between 30 and 100 min. Solubility limitations for both SR14968 and SR17018 impaired our ability to determine in-vivo potency and effectiveness on antinociceptive and %SpO2 measures for these two compounds.


Subject(s)
GTP-Binding Proteins/metabolism , Opioid-Related Disorders/drug therapy , Pain/drug therapy , Receptors, Opioid, mu , Respiration/drug effects , Spiro Compounds/pharmacology , Thiophenes/pharmacology , Analgesics/pharmacology , Animals , Behavior, Animal , Drug Evaluation/methods , Macaca mulatta , Male , Oximetry/methods , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/metabolism
12.
Cell ; 184(7): 1659-1660, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33798438

ABSTRACT

Partial agonism describes the relative efficacy of a drug compared to one that produces a greater response in a particular system; the designation is dependent upon the comparator and the system. In this issue of Cell, Huang et al. describe biophysical approaches to define the signature of GPCR partial agonists, providing direct measures of varying intrinsic efficacy.


Subject(s)
Caffeine
13.
J Med Chem ; 64(7): 3870-3884, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33761251

ABSTRACT

We report the development of novel cannabinergic probes that can stabilize the cannabinoid receptors (CBRs) through tight binding interactions. Ligand design involves the introduction of select groups at a judiciously chosen position within the classical hexahydrocannabinol template (monofunctionalized probes). Such groups include the electrophilic isothiocyanato, the photoactivatable azido, and the polar cyano moieties. These groups can also be combined to produce bifunctionalized probes potentially capable of interacting at two distinct sites within the CBR-binding domains. These novel compounds display remarkably high binding affinities for CBRs and are exceptionally potent agonists. A key ligand (27a, AM11245) exhibits exceptionally high potency in both in vitro and in vivo assays and was designated as "megagonist," a property attributed to its tight binding profile. By acting both centrally and peripherally, 27a distinguishes itself from our previously reported "megagonist" AM841, whose functions are restricted to the periphery.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Analgesics/chemical synthesis , Analgesics/metabolism , Analgesics/pharmacology , Animals , Body Temperature Regulation/drug effects , CHO Cells , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/metabolism , Cannabinoids/chemical synthesis , Cannabinoids/metabolism , Cricetulus , Humans , Ligands , Locomotion/drug effects , Male , Mice , Molecular Docking Simulation , Rats
14.
Neuropharmacology ; 185: 108439, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33345829

ABSTRACT

The mu opioid receptor-selective agonist, SR-17018, preferentially activates GTPγS binding over ßarrestin2 recruitment in cellular assays, thereby demonstrating signaling bias. In mice, SR-17018 stimulates GTPγS binding in brainstem and produces antinociception with potencies similar to morphine. However, it produces much less respiratory suppression and mice do not develop antinociceptive tolerance in the hot plate assay upon repeated dosing. Herein we evaluate the effects of acute and repeated dosing of SR-17018, oxycodone and morphine in additional models of pain-related behaviors. In the mouse warm water tail immersion assay, an assessment of spinal reflex to thermal nociception, repeated administration of SR-17018 produces tolerance as does morphine and oxycodone. SR-17018 retains efficacy in a formalin-induced inflammatory pain model upon repeated dosing, while oxycodone does not. In a chemotherapeutic-induced neuropathy pain model SR-17018 is more potent and efficacious than morphine or oxycodone, moreover, this efficacy is retained upon repeated dosing of SR-17018. These findings demonstrate that, with the exception of the tail flick test, SR-17018 retains efficacy upon chronic treatment across several pain models.


Subject(s)
Analgesics, Opioid/administration & dosage , Benzimidazoles/administration & dosage , Morphine/administration & dosage , Neuralgia/drug therapy , Oxycodone/administration & dosage , Piperidines/administration & dosage , Receptors, Opioid, mu/agonists , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Tolerance , Female , Infusion Pumps, Implantable , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Neuralgia/pathology , Pain Measurement/drug effects , Pain Measurement/methods , Treatment Outcome
15.
Cell ; 180(4): 655-665.e18, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32004463

ABSTRACT

Human endocannabinoid systems modulate multiple physiological processes mainly through the activation of cannabinoid receptors CB1 and CB2. Their high sequence similarity, low agonist selectivity, and lack of activation and G protein-coupling knowledge have hindered the development of therapeutic applications. Importantly, missing structural information has significantly held back the development of promising CB2-selective agonist drugs for treating inflammatory and neuropathic pain without the psychoactivity of CB1. Here, we report the cryoelectron microscopy structures of synthetic cannabinoid-bound CB2 and CB1 in complex with Gi, as well as agonist-bound CB2 crystal structure. Of important scientific and therapeutic benefit, our results reveal a diverse activation and signaling mechanism, the structural basis of CB2-selective agonists design, and the unexpected interaction of cholesterol with CB1, suggestive of its endogenous allosteric modulating role.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB2/chemistry , Signal Transduction , Allosteric Regulation , Allosteric Site , Animals , CHO Cells , Cannabinoid Receptor Agonists/chemistry , Cannabinoids/chemistry , Cannabinoids/pharmacology , Cell Line, Tumor , Cholesterol/chemistry , Cholesterol/pharmacology , Cricetinae , Cricetulus , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Humans , Molecular Dynamics Simulation , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Sf9 Cells , Spodoptera
16.
Mol Psychiatry ; 25(9): 2086-2100, 2020 09.
Article in English | MEDLINE | ID: mdl-30120413

ABSTRACT

The dopamine (DA) D2 receptor (D2R) is an important target for the treatment of neuropsychiatric disorders such as schizophrenia and Parkinson's disease. However, the development of improved therapeutic strategies has been hampered by our incomplete understanding of this receptor's downstream signaling processes in vivo and how these relate to the desired and undesired effects of drugs. D2R is a G protein-coupled receptor (GPCR) that activates G protein-dependent as well as non-canonical arrestin-dependent signaling pathways. Whether these effector pathways act alone or in concert to facilitate specific D2R-dependent behaviors is unclear. Here, we report on the development of a D2R mutant that recruits arrestin but is devoid of G protein activity. When expressed virally in "indirect pathway" medium spiny neurons (iMSNs) in the ventral striatum of D2R knockout mice, this mutant restored basal locomotor activity and cocaine-induced locomotor activity in a manner indistinguishable from wild-type D2R, indicating that arrestin recruitment can drive locomotion in the absence of D2R-mediated G protein signaling. In contrast, incentive motivation was enhanced only by wild-type D2R, signifying a dissociation in the mechanisms that underlie distinct D2R-dependent behaviors, and opening the door to more targeted therapeutics.


Subject(s)
Arrestin , Locomotion , Motivation , Receptors, Dopamine D2 , Animals , Cocaine , Corpus Striatum/metabolism , Mice , Mice, Knockout , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism
17.
Neuropsychopharmacology ; 45(2): 416-425, 2020 01.
Article in English | MEDLINE | ID: mdl-31443104

ABSTRACT

It has been demonstrated that opioid agonists that preferentially act at µ-opioid receptors to activate G protein signaling over ßarrestin2 recruitment produce antinociception with less respiratory suppression. However, most of the adverse effects associated with opioid therapeutics are realized after extended dosing. Therefore, we tested the onset of tolerance and dependence, and assessed for neurochemical changes associated with prolonged treatment with the biased agonist SR-17018. When chronically administered to mice, SR-17018 does not lead to hot plate antinociceptive tolerance, receptor desensitization in periaqueductal gray, nor a super-sensitization of adenylyl cyclase in the striatum, which are hallmarks of opioid neuronal adaptations that are seen with morphine. Interestingly, substitution with SR-17018 in morphine-tolerant mice restores morphine potency and efficacy, whereas the onset of opioid withdrawal is prevented. This is in contrast to buprenorphine, which can suppress withdrawal, but produces and maintains morphine antinociceptive tolerance. Biased agonists of this nature may therefore be useful for the treatment of opioid dependence while restoring opioid antinociceptive sensitivity.


Subject(s)
Analgesics, Opioid/metabolism , Drug Tolerance/physiology , Morphine Dependence/metabolism , Morphine/metabolism , Receptors, Opioid, mu/metabolism , Substance Withdrawal Syndrome/metabolism , Analgesics, Opioid/administration & dosage , Animals , Dose-Response Relationship, Drug , Female , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Infusion Pumps, Implantable , Male , Mice , Mice, Inbred C57BL , Morphine/administration & dosage , Oxycodone/administration & dosage , Oxycodone/metabolism , Pain Measurement/drug effects , Pain Measurement/methods , Receptors, Opioid, mu/agonists , Substance Withdrawal Syndrome/prevention & control
18.
Biol Psychiatry ; 87(1): 15-21, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31806082

ABSTRACT

The mu opioid receptor (MOR) is a diversely regulated target for the alleviation of pain in the clinical setting. However, untoward side effects such as tolerance, dependence, respiratory suppression, constipation, and abuse liability detract from the general activation of these receptors. Studies in genetically modified rodent models suggest that activating G protein signaling pathways while avoiding phosphorylation of the receptor or recruitment of ß-arrestin scaffolding proteins could preserve the analgesic properties of MOR agonists while avoiding certain side effects. With the development of novel MOR "biased" agonists, which lead to preferential activation of G protein pathways over receptor phosphorylation, internalization, or interaction with other effectors, this hypothesis can be tested in a native, physiological setting. Overall, it is clear that the MOR is not a simple on-off switch and that the diverse means by which the receptor can be regulated may present an opportunity to refine therapeutics for the treatment of pain.


Subject(s)
Analgesics, Opioid , Receptors, Opioid, mu , Analgesics/pharmacology , Analgesics, Opioid/pharmacology , Drug Tolerance , Receptors, Opioid, mu/metabolism , Signal Transduction , beta-Arrestins/metabolism
19.
Mol Pharmacol ; 96(5): 619-628, 2019 11.
Article in English | MEDLINE | ID: mdl-31515283

ABSTRACT

Cannabinoid receptor 1 (CB1) is a potential therapeutic target for the treatment of pain, obesity and obesity-related metabolic disorders, and addiction. The crystal structure of human CB1 has been determined in complex with the stabilizing antagonist AM6538. In the present study, we characterize AM6538 as a tight-binding/irreversible antagonist of CB1, as well as two derivatives of AM6538 (AM4112 and AM6542) as slowly dissociating CB1 antagonists across binding simulations and cellular signaling assays. The long-lasting nature of AM6538 was explored in vivo wherein AM6538 continues to block CP55,940-mediated behaviors in mice up to 5 days after a single injection. In contrast, the effects of SR141716A abate in mice 2 days after injection. These studies demonstrate the functional outcome of CB1 antagonist modification and open the path for development of long-lasting CB1 antagonists.


Subject(s)
Cannabinoid Receptor Antagonists/metabolism , Cannabinoid Receptor Antagonists/pharmacology , Nitrates/metabolism , Nitrates/pharmacology , Piperidines/metabolism , Piperidines/pharmacology , Pyrazoles/metabolism , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Animals , Binding Sites/drug effects , Binding Sites/physiology , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Protein Binding/drug effects , Protein Binding/physiology , Protein Structure, Secondary , Receptor, Cannabinoid, CB1/chemistry
20.
Methods Mol Biol ; 1957: 235-247, 2019.
Article in English | MEDLINE | ID: mdl-30919358

ABSTRACT

G protein-coupled receptors (GPCRs) can interact with both G proteins and ß-arrestin proteins to propagate different signaling outputs. In some contexts, agonists may drive the receptor to preferentially engage one of these effectors over the other. Such "ligand bias" may present a means to impart pathway-selective signaling downstream of this class of receptors. In cases where physiological responses are mediated by diverse pathways, this could, in part, provide a means to refine GPCR therapeutics. Cell-based signaling assays are used to measure the potential for signaling bias in vitro, and these measures take into account potency, efficacy, and the overall capacity of the assay. However, narrow assay windows sometimes limit the confidence in estimating agonist activity, if a compound performs as a very weakly efficacious partial agonist. This lack of response in an assay hampers the ability to measure and compare potencies, and the degree of separation of an agonist's performance, between two assays. In this chapter, we describe in detail a method for the estimation of the relative activity of a partial agonist and provide a stepwise protocol for calculating bias when this case arises.


Subject(s)
Biological Assay/methods , Models, Biological , Bias , Confidence Intervals , Ligands , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...