Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(3): e2310039121, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38215182

ABSTRACT

Surface roughness ubiquitously prevails in natural faults across various length scales. Despite extensive studies highlighting the important role of fault geometry in the dynamics of tectonic earthquakes, whether and how fault roughness affects fluid-induced seismicity remains elusive. Here, we investigate the effects of fault geometry and stress heterogeneity on fluid-induced fault slip and associated seismicity characteristics using laboratory experiments and numerical modeling. We perform fluid injection experiments on quartz-rich sandstone samples containing either a smooth or a rough fault. We find that geometrical roughness slows down injection-induced fault slip and reduces macroscopic slip velocities and fault slip-weakening rates. Stress heterogeneity and roughness control hypocenter distribution, frequency-magnitude characteristics, and source mechanisms of injection-induced acoustic emissions (AEs) (analogous to natural seismicity). In contrast to smooth faults where injection-induced AEs are uniformly distributed, slip on rough faults produces spatially localized AEs with pronounced non-double-couple source mechanisms. We demonstrate that these clustered AEs occur around highly stressed asperities where induced local slip rates are higher, accompanied by lower Gutenberg-Richter b-values. Our findings suggest that real-time monitoring of induced microseismicity during fluid injection may allow identifying progressive localization of seismic activity and improve forecasting of runaway events.

2.
Sci Adv ; 5(5): eaav7224, 2019 May.
Article in English | MEDLINE | ID: mdl-31049397

ABSTRACT

We show that near-real-time seismic monitoring of fluid injection allowed control of induced earthquakes during the stimulation of a 6.1-km-deep geothermal well near Helsinki, Finland. A total of 18,160 m3 of fresh water was pumped into crystalline rocks over 49 days in June to July 2018. Seismic monitoring was performed with a 24-station borehole seismometer network. Using near-real-time information on induced-earthquake rates, locations, magnitudes, and evolution of seismic and hydraulic energy, pumping was either stopped or varied-in the latter case, between well-head pressures of 60 and 90 MPa and flow rates of 400 and 800 liters/min. This procedure avoided the nucleation of a project-stopping magnitude M W 2.0 induced earthquake, a limit set by local authorities. Our results suggest a possible physics-based approach to controlling stimulation-induced seismicity in geothermal projects.

3.
Sci Rep ; 8(1): 16176, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30385791

ABSTRACT

A primary hurdle in observing small foreshocks is the detection-limit of most seismic networks, which is typically about magnitude M1-1.5. We show that a start-up test of a borehole-based seismic network with a much lower detection limit overcame this problem for an Mw4.2 earthquake. This earthquake occurred offshore of Istanbul, Turkey, on a fault system that is likely to rupture in an M > 7 event in the coming decades. In the three days before and two after, a total of 62 or more earthquakes, including at least 18 foreshocks, came from the mainshock source area. The signal similarity of the foreshocks shows a clear increase during the hours before the Mw4.2 mainshock. Similar foreshock sequences have recently been reported for a few well monitored M > 7 plate-boundary earthquakes. The sequence surrounding the Mw4.2 gives the impression of stochastic failures that ended up interactively unloading stress concentrations. The Mw4.2 mainshock then resulted from the accumulated release of significantly smaller events, as suggested by other field and laboratory studies.

4.
Sensors (Basel) ; 13(9): 11522-38, 2013 Sep 02.
Article in English | MEDLINE | ID: mdl-24002229

ABSTRACT

A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection.


Subject(s)
Carbon Dioxide/analysis , Environmental Monitoring/methods , Fuel Oils/analysis , Geology/methods , Oscillometry/methods , Water Supply/analysis , Canada , Pattern Recognition, Automated/methods , Pilot Projects , Vibration
5.
Nat Commun ; 4: 1999, 2013.
Article in English | MEDLINE | ID: mdl-23778720

ABSTRACT

Over the last century the North Anatolian Fault Zone in Turkey has produced a remarkable sequence of large earthquakes. These events have now left an earthquake gap south of Istanbul and beneath the Marmara Sea, a gap that has not been filled for 250 years. Here we investigate the nature of the eastern end of this gap using microearthquakes recorded by seismographs primarily on the Princes Islands offshore Istanbul. This segment lies at the western terminus of the 1999 Mw7.4 Izmit earthquake. Starting from there, we identify a 30-km-long fault patch that is entirely aseismic down to a depth of 10 km. Our evidence indicates that this patch is locked and is therefore a potential nucleation point for another Marmara segment earthquake-a potential that has significant natural hazards implications for the roughly 13 million Istanbul residents immediately to its north.


Subject(s)
Earthquakes , Geography , Humans , Islands , Oceans and Seas , Turkey
SELECTION OF CITATIONS
SEARCH DETAIL
...