Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Heart Assoc ; 13(14): e034363, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38979786

ABSTRACT

BACKGROUND: Aging-associated left ventricular dysfunction promotes cardiopulmonary fibrogenic remodeling, Group 2 pulmonary hypertension (PH), and right ventricular failure. At the time of diagnosis, cardiac function has declined, and cardiopulmonary fibrosis has often developed. Here, we sought to develop a molecular positron emission tomography (PET)-magnetic resonance imaging (MRI) protocol to detect both cardiopulmonary fibrosis and fibrotic disease activity in a left ventricular dysfunction model. METHODS AND RESULTS: Left ventricular dysfunction was induced by transverse aortic constriction (TAC) in 6-month-old senescence-accelerated prone mice, a subset of mice that received sham surgery. Three weeks after surgery, mice underwent simultaneous PET-MRI at 4.7 T. Collagen-targeted PET and fibrogenesis magnetic resonance (MR) probes were intravenously administered. PET signal was computed as myocardium- or lung-to-muscle ratio. Percent signal intensity increase and Δ lung-to-muscle ratio were computed from the pre-/postinjection magnetic resonance images. Elevated allysine in the heart (P=0.02) and lungs (P=0.17) of TAC mice corresponded to an increase in myocardial magnetic resonance imaging percent signal intensity increase (P<0.0001) and Δlung-to-muscle ratio (P<0.0001). Hydroxyproline in the heart (P<0.0001) and lungs (P<0.01) were elevated in TAC mice, which corresponded to an increase in heart (myocardium-to-muscle ratio, P=0.02) and lung (lung-to-muscle ratio, P<0.001) PET measurements. Pressure-volume loop and echocardiography demonstrated adverse left ventricular remodeling, function, and increased right ventricular systolic pressure in TAC mice. CONCLUSIONS: Administration of collagen-targeted PET and allysine-targeted MR probes led to elevated PET-magnetic resonance imaging signals in the myocardium and lungs of TAC mice. The study demonstrates the potential to detect fibrosis and fibrogenesis in cardiopulmonary disease through a dual molecular PET-magnetic resonance imaging protocol.


Subject(s)
Disease Models, Animal , Fibrosis , Magnetic Resonance Imaging , Positron-Emission Tomography , Ventricular Dysfunction, Left , Animals , Positron-Emission Tomography/methods , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism , Magnetic Resonance Imaging/methods , Mice , Myocardium/pathology , Myocardium/metabolism , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/physiopathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/etiology , Ventricular Function, Left , Male , Lung/diagnostic imaging , Lung/pathology , Lung/physiopathology , Lung/metabolism , Multimodal Imaging/methods , Collagen/metabolism , Ventricular Remodeling , Lysine/analogs & derivatives
2.
Cancer Res ; 84(15): 2549-2560, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38759082

ABSTRACT

Neoadjuvant therapy is routinely used in pancreatic ductal adenocarcinoma (PDAC), but not all tumors respond to this treatment. Current clinical imaging techniques are not able to precisely evaluate and predict the response to neoadjuvant therapies over several weeks. A strong fibrotic reaction is a hallmark of a positive response, and during fibrogenesis, allysine residues are formed on collagen proteins by the action of lysyl oxidases. Here, we report the application of an allysine-targeted molecular MRI probe, MnL3, to provide an early, noninvasive assessment of treatment response in PDAC. Allysine increased 2- to 3-fold after one dose of neoadjuvant therapy with FOLFIRINOX in sensitive human PDAC xenografts in mice. Molecular MRI with MnL3 could specifically detect and quantify fibrogenesis in PDAC xenografts. Comparing the MnL3 signal before and 3 days after one dose of FOLFIRINOX predicted subsequent treatment response. The MnL3 tumor signal increased by 70% from day 0 to day 3 in mice that responded to subsequent doses of FOLFIRINOX, whereas no signal increase was observed in FOLFIRINOX-resistant tumors. This study indicates the promise of allysine-targeted molecular MRI as a noninvasive tool to predict chemotherapy outcomes. Significance: Allysine-targeted molecular MRI can quantify fibrogenesis in pancreatic tumors and predict response to chemotherapy, which could guide rapid clinical management decisions by differentiating responders from nonresponders after treatment initiation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Carcinoma, Pancreatic Ductal , Irinotecan , Magnetic Resonance Imaging , Pancreatic Neoplasms , Xenograft Model Antitumor Assays , Animals , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Mice , Irinotecan/pharmacology , Irinotecan/administration & dosage , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Magnetic Resonance Imaging/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Fluorouracil/pharmacology , Fluorouracil/administration & dosage , Oxaliplatin/pharmacology , Oxaliplatin/administration & dosage , Cell Line, Tumor , Leucovorin/administration & dosage , Leucovorin/pharmacology , Leucovorin/therapeutic use , Neoadjuvant Therapy , Female , Lysine
3.
J Am Chem Soc ; 145(38): 20825-20836, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37589185

ABSTRACT

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small-molecule magnetic resonance probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis non-invasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that, for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, makes them strong candidates for clinical translation.


Subject(s)
2-Aminoadipic Acid , Aldehydes , Mice , Animals , 2-Aminoadipic Acid/chemistry , Magnetic Resonance Imaging , Lung
4.
bioRxiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131719

ABSTRACT

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small molecule magnetic resonance (MR) probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis noninvasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, make them strong candidates for clinical translation.

SELECTION OF CITATIONS
SEARCH DETAIL