Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(10): 2677-2680, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748134

ABSTRACT

A monolithic fiber laser emitting 1.7 W at 3920 nm is experimentally demonstrated in a Ho3+:InF3 fiber. The cavity comprises a pair of highly reflective fiber Bragg gratings written in the active fiber with the femtosecond phase-mask scanning technique and is spliced to the pump diode with a robust silica-to-fluoride fiber splice. This work is an important step toward high-power all-fiber laser operating in the vicinity of 4 µm.

2.
Opt Lett ; 49(8): 2021-2024, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621066

ABSTRACT

The focus of this study was the development of a second generation of fiber lasers internally cooled by anti-Stokes fluorescence. The laser consisted of a length of a single-mode fiber spliced to fiber Bragg gratings to form the optical resonator. The fiber was single-moded at the pump (1040 nm) and signal (1064 nm) wavelengths. Its core was heavily doped with Yb, in the initial form of CaF2 nanoparticles, and co-doped with Al to reduce quenching and improve the cooling efficiency. After optimizing the fiber length (4.1 m) and output-coupler reflectivity (3.3%), the fiber laser exhibited a threshold of 160 mW, an optical efficiency of 56.8%, and a radiation-balanced output power (no net heat generation) of 192 mW. On all three metrics, this performance is significantly better than the only previously reported radiation-balanced fiber laser, which is even more meaningful given that the small size of the single-mode fiber core (7.8-µm diameter). At the maximum output power (∼2 W), the average fiber temperature was still barely above room temperature (428 mK). This work demonstrates that with anti-Stokes pumping, it is possible to induce significant gain and energy storage in a small-core Yb-doped fiber while keeping the fiber cool.

3.
Med Phys ; 51(5): 3758-3765, 2024 May.
Article in English | MEDLINE | ID: mdl-38295013

ABSTRACT

BACKGROUND: The interest of using fiber Bragg gratings (FBGs) dosimeters in radiotherapy (RT) lies in their (i) microliter detection volume, (ii) customizable spatial resolution, (iii) multi-point dose measurement, (iv) real-time data acquisition and (v) insensitivity to Cherenkov light. These characteristics could prove very useful for characterizing dose distributions of small and nonstandard fields with high spatial resolution. PURPOSE: We developed a multi-point FBGs dosimeter customized for small field RT dosimetry with a spatial resolution of ∼ $\sim$ 1 mm. METHODS: The 3 cm-long multi-point dosimeter is made by embedding a 80 µ m $\umu{\rm {m}}$ silica fiber containing an array of thirty (30) co-located ∼ $\sim$ 1 mm-long fs-written FBGs inside a plastic cylinder with an UV curing optical adhesive. With its higher thermal expansion coefficient, the plastic cylinder increases the sensitivity of the dosimeter by stretching the fiber containing the FBGs when the temperature rises slightly due to radiation energy deposition. Irradiations (2000 MU at 600 MU/min) were performed with a Varian TrueBeam linear accelerator. RESULTS: The dose profile of a 2  × $ \times$ 2 cm 2 $^{2}$ 6 MV beam was measured with a mean relative difference of 1.8% (excluding the penumbra region). The measured output factors for a 6 MV beam are in general agreement with the expected values within the experimental uncertainty (except for the 2  × $\,\times $ 2 cm 2 $^{2}$ field). The detector response to different energy of photon and electron beams is within 5% of the mean response ( 0.068 ± 0.002 $0.068\pm 0.002$  pm/Gy). The calorimeter's post-irradiation thermal decay is in agreement with the theory. CONCLUSIONS: An energy-independent small field calorimeter that allows dose profile and output factor measurements for RT using FBGs was developed, which, to our knowledge, has never been done before. This type of detector could prove really useful for small field dosimetry, but also potentially for MRI-LINAC since FBGs are insensitive to magnetic fields and for FLASH since FBGs have been used to measure doses up to 100 kGy.


Subject(s)
Radiometry , Radiometry/instrumentation , Calorimetry/instrumentation , Optical Fibers , Radiotherapy/instrumentation , Equipment Design , Radiotherapy Dosage
4.
Appl Opt ; 62(23): G69-G76, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37707065

ABSTRACT

We report a tunable all-fiber laser emitting a maximum output power of 2.55 W around 3240 nm. The fiber laser cavity based on a fluoride fiber doped with dysprosium ions yields an efficiency of 42% according to the in-band launched pump power at 2825 nm. Due to a custom piezoelectric fiber Bragg grating (FBG) package, mechanical strains applied to the narrowband FBG used as the input cavity coupler allowed for fast tuning of the emission wavelength over a spectral range of 1.5 nm. This laser was deployed in the field in northern Québec (Canada) to assess its performances for remote sensing of methane in the presence of a significant amount of water vapor, i.e., over a hydroelectric reservoir. The preliminary results acquired during this field campaign confirm the great potential of the proposed approach for the development of a real-time active imaging system of greenhouse gases.

5.
Sensors (Basel) ; 23(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36679681

ABSTRACT

The interest in fiber Bragg gratings dosimeters for radiotherapy dosimetry lies in their (i) submillimeter size, (ii) multi-points dose measurements, and (iii) customizable spatial resolution. However, since the radiation measurement relies on the thermal expansion of the surrounding polymer coating, such sensors are strongly temperature dependent, which needs to be accounted for; otherwise, the errors on measurements can be higher than the measurements themselves. In this paper, we test and compare four techniques for temperature compensation: two types of dual grating techniques using different coatings, a pre-irradiation and post-irradiation temperature drift technique, which is used for calorimetry, and finally, we developed a real-time interpolated temperature gradient for the multi-points dosimetry technique. We show that, over these four tested techniques, the last one outperforms the others and allows for real-time temperature correction when an array of 13 fiber Bragg gratings spatially extending over the irradiation zone is used. For a 20 Gy irradiation, this technique reduces the measurement errors from 200% to about 10%, making it suitable for a radiotherapy dose range. Temperature correction for medical low-dose range dosimetry is a first in our field and is essential for clinical FBG dosimetry applications.


Subject(s)
Radiation Dosimeters , Radiometry , Temperature , Radiometry/methods , Radiation Dosage , Polymers
6.
Sensors (Basel) ; 22(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36433413

ABSTRACT

Strain sensing technology using fibre Bragg grating (FBG) sensors is an attractive capability for aerospace structural health monitoring (SHM) and assessment because they offer resistance to harsh environments, low maintenance, and potential for high density and high strain sensing. The development of FBG inscription techniques through the fibre polymer coating using infrared (IR) lasers has overcome the mechanical weaknesses introduced by removal of the fibre coating, which is typically required for conventional UV laser inscription of FBGs. Type I and Type II femtosecond gratings are fabricated using through-coating inscription techniques, but the higher laser energy used for Type II gratings damages the glass fibre core, impacting mechanical performance. This paper investigates the fatigue performance of Type I and Type II through-coating FBG sensors with different fibre geometries and photosensitisation approaches to evaluate their overall reliability and durability, with a view to assess their performance for potential use in civil and defence SHM applications. The fatigue performance of FBG sensors was assessed under high-strain and high-frequency mechanical loading conditions by using a custom-designed electro-dynamically actuated loading assembly. In addition, pre- and post-fatigue microscopic analyses and high-resolution reflection spectrum characterisation were conducted to investigate the failure regions of the fibres and the effect of fatigue loading on reflection spectrum features. As expected, Type I gratings had a significantly higher fatigue life compared to Type II gratings. However, Type II gratings performed significantly better than conventional UV laser-inscribed FBGs and electrical foil strain gauges. Type II gratings withstand higher temperatures, and are therefore more suitable for application in harsh environments.

7.
Opt Lett ; 47(10): 2590-2593, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35561408

ABSTRACT

The first observation of cooling by anti-Stokes pumping in nanoparticle-doped silica fibers is reported. Four Yb-doped fibers fabricated using conventional modified chemical vapor deposition (MCVD) techniques were evaluated, namely, an aluminosilicate fiber and three fibers in which the Yb ions were encapsulated in CaF2, SrF2, or BaF2 nanoparticles. The nanoparticles, which oxidize during preform processing, provide a modified chemical environment for the Yb3+ ions that is beneficial to cooling. When pumped at the near-optimum cooling wavelength of 1040 nm at atmospheric pressure, the fibers experienced a maximum measured temperature drop of 20.5 mK (aluminosilicate fiber), 26.2 mK (CaF2 fiber), and 16.7 mK (SrF2 fiber). The BaF2 fiber did not cool but warmed slightly. The three fibers that cooled had a cooling efficiency comparable to that of the best previously reported Yb-doped silica fiber that cooled. Data analysis shows that this efficiency is explained by the fibers' high critical quenching concentration and low residual absorptive loss (linked to sub-ppm OH contamination). This study demonstrates the large untapped potential of nanoparticle doping in the current search for silicate compositions that produce optimum anti-Stokes cooling.

8.
Opt Express ; 30(6): 8615-8640, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299310

ABSTRACT

Mid-infrared fiber sources, emitting between 2.5 µm and 5.0 µm, are interesting for their great potential in several application fields such as material processing, biomedicine, remote sensing and infrared countermeasures due to their high-power, their diffraction-limited beam quality as well as their robust monolithic architecture. In this review, we will focus on the recent progress in continuous wave and pulsed mid-infrared fiber lasers and the components that bring these laser sources closer to a field deployment as well as in industrial systems. Accordingly, we will briefly illustrate the potential of such mid-infrared fiber lasers through a few selected applications.

9.
Sci Rep ; 12(1): 4350, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35288603

ABSTRACT

We propose an efficient method to determine the effective refractive index of step-index optical fibers from the visible to the mid-IR and thus allowing to infer their dispersive properties over a broad spectral range. The validity of the method, based on the writing of an array of fiber Bragg gratings (FBGs) with known periods using the fs scanning phase mask technique, is first confirmed with a standard silica fiber, then applied to various fluoride glass fibers to determine their effective refractive index and dispersion over more than three octaves, i.e. from 550 to 4800 nm.

10.
Opt Express ; 30(3): 3367-3378, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35209596

ABSTRACT

We report on a mid-infrared Q-switched erbium-doped all-fiber laser using a dysprosium-doped silica fiber as saturable absorber for the first time in this wavelength range. Moreover, we demonstrate the use of a highly reflective chirped fiber Bragg grating written in a silica fiber as the input coupler for such lasers. This Q-switched all-fiber laser generates a stable pulse train centered at 2798 nm with a maximum average power of 670 mW at a repetition rate of 140 kHz with a pulse duration of 240 ns and a pulse energy of 4.9 µJ.

11.
Opt Lett ; 47(2): 289-292, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35030589

ABSTRACT

We report a dual-wavelength-pumped all-fiber continuous-wave (CW) laser operating at 3.55 µm that reached an output power of 14.9 W, which is, to the best of our knowledge, a record. The laser cavity, made of an erbium-doped fluoride fiber and bounded by two fiber Bragg gratings (FBGs), operates at an overall optical efficiency of 17.2% and a slope efficiency of 51.3% with respect to the 1976 nm launched pump power. The all-fiber design of the cavity not only allows for significant power scaling of the laser output, but also improves its long-term stability at high output power. The cavity design was set according to a numerical optimization that showed very good agreement with the experimental results.

12.
Opt Lett ; 47(23): 6253-6256, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-37219220

ABSTRACT

We propose an innovative femtosecond laser writing approach, based on a reel-to-reel configuration, allowing the fabrication of arbitrary long optical waveguides in coreless optical fibers directly through the coating. We report few meters long waveguides operating in the near-infrared (near-IR) with propagation losses as low as 0.055 ± 0.004 dB/cm at 700 nm. The refractive index distribution is shown to be homogeneous with a quasi-circular cross section, its contrast being controllable via the writing velocity. Our work paves the way for the direct fabrication of complex arrangements of cores in standard and exotic optical fibers.

13.
Sensors (Basel) ; 21(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34884143

ABSTRACT

Fiber Bragg gratings (FBGs) are valuable dosimeters for doses up to 100 kilograys (kGy), but have hardly been used for the low-dose range of a few grays (Gy) required in medical radiation dosimetry. We report that embedding a doped silica fiber FBG in a polymer material allows a minimum detectable dose of 0.3 Gy for γ-radiation. Comparing the detector response for different doped silica fibers with various core doping, we obtain an independent response, in opposition to what is reported for high-dose range. We hypothesized that the sensor detection is based on the radio-induced thermal expansion of the surrounding polymer. Hence, we used a simple physical model based on the thermal and mechanical properties of the surrounding polymer and obtained good accordance between measured and calculated values for different compositions and thicknesses. We report that over the 4 embedding polymers tested, polyether ether ketone and polypropylene have respectively the lowest (0.056 pm/Gy) and largest sensitivity (0.087 pm/Gy). Such FBG-based dosimeters have the potential to be distributed along the fiber to allow multipoint detection while having a sub-millimeter size that could prove very useful for low-dose applications, in particular for radiotherapy dosimetry.


Subject(s)
Radiation Dosimeters , Radiometry , Polymers
14.
Phys Rev Lett ; 127(1): 013903, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34270319

ABSTRACT

We report what we believe to be the first radiation-balanced fiber amplifier-a device that provides optical gain while experiencing no temperature rise. The gain medium is a silica fiber with a 21-µm-diameter core highly doped with Yb^{3+} (2.52 wt. %) and codoped with 2.00 wt. % Al to reduce concentration quenching. The amplifier is core pumped with 1040-nm light to create anti-Stokes fluorescence cooling and gain in the core at 1064 nm. Using a custom slow-light fiber Bragg grating sensor with mK resolution, temperature measurements are performed at multiple locations along the amplifier fiber. A 4.35-m fiber pumped with 2.62 W produced 17 dB of gain, while the average fiber temperature remained slightly below room temperature. This advancement is a fundamental step toward the creation of ultrastable lasers necessary to many applications, especially low-noise sensing and high-precision metrology.

15.
Opt Express ; 28(26): 39387-39399, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379489

ABSTRACT

We report on the development of a novel hybrid glass-polymer multicore fiber integrating three 80 µm polyimide-coated silica fibers inside a 750 µm polycarbonate cladding. By inscribing an array of distributed FBGs along each segment of silica fiber prior to the hybrid fiber drawing, we demonstrate a curvature sensor with an unprecedented precision of 296 pm/m-1 around 1550 nm, about 7 times more sensitive than sensors based on standard 125 µm multicore fibers. As predicted by theory, we show experimentally that the measured curvature is insensitive to temperature and strain. Also, a more precise equation to describe the curvature on a simple bending setup is presented. This new hybrid multicore fiber technology has the potential to be extended over several kilometers and can find high-end applications in 3D shape sensing and structural health monitoring.

16.
Opt Express ; 28(18): 26067-26075, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32906883

ABSTRACT

We present a high resolution temperature sensor using the beat frequency between the longitudinal modes of twin single-mode distributed feedback fiber lasers. The lasers are made by femtosecond inscription of π-shifted fiber Bragg gratings in a thulium-doped fiber. Combining the light from two single frequency fiber lasers on a photodetector produces a rf beat frequency signal which is dependent on temperature. Experimental results show a sensitivity of 1900 MHz/°C, leading to a precision of 0.0007 °C.

17.
Opt Lett ; 45(11): 3179-3182, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32479489

ABSTRACT

This Letter reports the behavior of the slow-light resonances of a strong apodized fiber Bragg grating (FBG) in which the intrinsic loss is compensated for by a small internal gain. The 6.5-mm FBG, written with a femtosecond laser in an Er-doped single-mode fiber, was pumped at ∼1475nm just below the lasing threshold to offset most of its intrinsic loss, thereby narrowing its resonances. The fundamental slow-light resonance was measured to have a linewidth of 8.5 fm, or a record group velocity of ∼22km/s, and a peak transmission near unity (-0.2dB). The measured dependencies of the linewidth and peak transmission on pump power agree well with a new model that predicts the transmission spectrum of loss-compensated FBGs in the presence of pump and signal saturation.

18.
Opt Express ; 28(3): 3378-3387, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32122007

ABSTRACT

We report on an ytterbium-free erbium-doped aluminophosphosilicate all-fiber laser, producing an output power of 25 W at a wavelength of 1584 nm with a slope efficiency of 30% with respect to the 976 nm absorbed pump power. The simple cavity design proposed takes advantage of fiber Bragg gratings written directly in the gain fiber. The single-mode erbium-doped aluminophosphosilicate fiber was fabricated in-house and was doped with 0.06 mol.% of Er2O3, 1.77 mol.% of Al2O3 and 1.04 mol.% of P2O5. The incorporation of aluminium and phosphorus into the fiber core allowed for an increased concentration of erbium without inducing significant clustering, while keeping the numerical aperture low to ensure a single-mode laser operation.

19.
Sensors (Basel) ; 19(16)2019 Aug 12.
Article in English | MEDLINE | ID: mdl-31408984

ABSTRACT

Although fibre Bragg gratings (FBGs) offer obvious potential for use in high-density, high-strain sensing applications, the adoption of this technology in the historically conservative aerospace industry has been slow. There are several contributing factors, one of which is variability in the reported performance of these sensors in harsh and fatigue prone environments. This paper reports on a comparative evaluation of the fatigue performance of FBG sensors written according to the same specifications using three different grating manufacturing processes: sensors written in stripped and re-coated fibres, sensors written during the fibre draw process and sensors written through fibre coating. Fatigue cycling of the fibres is provided by a customized electro-dynamically actuated loading assembly designed to provide high frequency and amplitude loading. Pre- and post-fatigue microscopic analysis and high-resolution transmission and reflection spectra scanning are conducted to investigate the fatigue performance of FBGs, the failure regions of fibres as well as any fatigue-related effects on the spectral profiles. It was found that because of the unique fabrication method, the sensors written through the fibre coating, also known as trans-jacket FBGs, show better fatigue performance than stripped and re-coated FBGs with greater control possible to tailor the optical reflection properties compared to gratings written in the draw tower. This emerging method for inscription of Type I gratings opens up the potential for mass production of higher reflectivity, apodised sensors with dense or complex array architectures which can be adopted as sensors for harsh environments such as in defence and aerospace industries.

20.
Sensors (Basel) ; 17(11)2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29099077

ABSTRACT

Type I fiber Bragg gratings (FBG) written through the coating of various off-the-shelf silica fibers with a femtosecond laser and the phase-mask technique are reported. Inscription through most of the common coating compositions (acrylate, silicone and polyimide) is reported as well as writing through the polyimide coating of various fiber cladding diameters, down to 50 µm. The long term annealing behavior of type I gratings written in a pure silica core fiber is also reported as well as a comparison of the mechanical resistance of type I and II FBG. The high mechanical resistance of the resulting type I FBG is shown to be useful for the fabrication of various distributed FBG arrays written using a single period phase-mask. The strain sensing response of such distributed arrays is also presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...