Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Fluids Barriers CNS ; 21(1): 28, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532513

ABSTRACT

Waste from the brain has been shown to be cleared via the perivascular spaces through the so-called glymphatic system. According to this model the cerebrospinal fluid (CSF) enters the brain in perivascular spaces of arteries, crosses the astrocyte endfoot layer, flows through the parenchyma collecting waste that is subsequently drained along veins. Glymphatic clearance is dependent on astrocytic aquaporin-4 (AQP4) water channels that are highly enriched in the endfeet. Even though the polarized expression of AQP4 in endfeet is thought to be of crucial importance for glymphatic CSF influx, its role in extracellular solute clearance has only been evaluated using non-quantitative fluorescence measurements. Here we have quantitatively evaluated clearance of intrastriatally infused small and large radioactively labeled solutes in mice lacking AQP4 (Aqp4-/-) or lacking the endfoot pool of AQP4 (Snta1-/-). We confirm that Aqp4-/- mice show reduced clearance of both small and large extracellular solutes. Moreover, we find that the Snta1-/- mice have reduced clearance only for the 500 kDa [3H]dextran, but not 0.18 kDa [3H]mannitol suggesting that polarization of AQP4 to the endfeet is primarily important for clearance of large, but not small molecules. Lastly, we observed that clearance of 500 kDa [3H]dextran increased with age in adult mice. Based on our quantitative measurements, we confirm that presence of AQP4 is important for clearance of extracellular solutes, while the perivascular AQP4 localization seems to have a greater impact on clearance of large versus small molecules.


MAIN POINTS: Solute clearance is reduced in mice lacking AQP4 Polarization of AQP4 to the endfeet may have a greater impact on clearance of large versus small molecules Clearance of large but not small solutes is correlated with age within adult age.


Subject(s)
Dextrans , Glymphatic System , Animals , Mice , Aquaporin 4/metabolism , Astrocytes/metabolism , Brain/metabolism , Dextrans/metabolism , Glymphatic System/metabolism
2.
Nat Commun ; 14(1): 953, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36806170

ABSTRACT

Perivascular spaces are important highways for fluid and solute transport in the brain enabling efficient waste clearance during sleep. However, the underlying mechanisms augmenting perivascular flow in sleep are unknown. Using two-photon imaging of naturally sleeping male mice we demonstrate sleep cycle-dependent vascular dynamics of pial arteries and penetrating arterioles: slow, large-amplitude oscillations in NREM sleep, a vasodilation in REM sleep, and a vasoconstriction upon awakening at the end of a sleep cycle and microarousals in NREM and intermediate sleep. These vascular dynamics are mirrored by changes in the size of the perivascular spaces of the penetrating arterioles: slow fluctuations in NREM sleep, reduction in REM sleep and an enlargement upon awakening after REM sleep and during microarousals in NREM and intermediate sleep. By biomechanical modeling we demonstrate that these sleep cycle-dependent perivascular dynamics likely enhance fluid flow and solute transport in perivascular spaces to levels comparable to cardiac pulsation-driven oscillations.


Subject(s)
Sleep, Slow-Wave , Sleep , Male , Animals , Mice , Sleep, REM , Arteries , Vasodilation
3.
Elife ; 112022 07 14.
Article in English | MEDLINE | ID: mdl-35833623

ABSTRACT

Increased astrocytic Ca2+ signaling has been shown in Alzheimer's disease mouse models, but to date no reports have characterized behaviorally induced astrocytic Ca2+ signaling in such mice. Here, we employ an event-based algorithm to assess astrocytic Ca2+ signals in the neocortex of awake-behaving tg-ArcSwe mice and non-transgenic wildtype littermates while monitoring pupil responses and behavior. We demonstrate an attenuated astrocytic Ca2+ response to locomotion and an uncoupling of pupil responses and astrocytic Ca2+ signaling in 15-month-old plaque-bearing mice. Using the genetically encoded fluorescent norepinephrine sensor GRABNE, we demonstrate a reduced norepinephrine signaling during spontaneous running and startle responses in the transgenic mice, providing a possible mechanistic underpinning of the observed reduced astrocytic Ca2+ responses. Our data points to a dysfunction in the norepinephrine-astrocyte Ca2+ activity axis, which may account for some of the cognitive deficits observed in Alzheimer's disease.


Neurodegenerative conditions such as Parkinson's or Alzheimer's disease are characterized by neurons dying and being damaged. Yet neurons are only one type of brain actors; astrocytes, for example, are star-shaped 'companion' cells that have recently emerged as being able to fine-tune neuronal communication. In particular, they can respond to norepinephrine, a signaling molecule that acts to prepare the brain and body for action. This activation results, for instance, in astrocytes releasing chemicals that can act on neurons. Certain cognitive symptoms associated with Alzheimer's disease could be due to a lack of norepinephrine. In parallel, studies in anaesthetized mice have shown perturbed astrocyte signaling in a model of the condition. Disrupted norepinephrine-triggered astrocyte signaling could therefore be implicated in the symptoms of the disease. Experiments in awake mice are needed to investigate this link, especially as anesthesia is known to disrupt the activity of astrocytes. To explore this question, Åbjørsbråten, Skaaraas et al. conducted experiments in naturally behaving mice expressing mutations found in patients with early-onset Alzheimer's disease. These mice develop hallmarks of the disorder. Compared to their healthy counterparts, these animals had reduced astrocyte signaling when running or being startled. Similarly, a fluorescent molecular marker for norepinephrine demonstrated less signaling in the modified mice compared to healthy ones. Over 55 million individuals currently live with Alzheimer's disease. The results by Åbjørsbråten, Skaaraas et al. suggest that astrocyte­norepinephrine communication may be implicated in the condition, an avenue of research that could potentially lead to developing new treatments.


Subject(s)
Alzheimer Disease , Astrocytes , Alzheimer Disease/genetics , Animals , Astrocytes/physiology , Calcium Signaling/physiology , Mice , Mice, Transgenic , Norepinephrine , Wakefulness/physiology
4.
Front Cell Neurosci ; 15: 681066, 2021.
Article in English | MEDLINE | ID: mdl-34093134

ABSTRACT

Imaging the intact brain of awake behaving mice without the dampening effects of anesthesia, has revealed an exceedingly rich repertoire of astrocytic Ca2+ signals. Analyzing and interpreting such complex signals pose many challenges. Traditional analyses of fluorescent changes typically rely on manually outlined static region-of-interests, but such analyses fail to capture the intricate spatiotemporal patterns of astrocytic Ca2+ dynamics. Moreover, all astrocytic Ca2+ imaging data obtained from awake behaving mice need to be interpreted in light of the complex behavioral patterns of the animal. Hence processing multimodal data, including animal behavior metrics, stimulation timings, and electrophysiological signals is needed to interpret astrocytic Ca2+ signals. Managing and incorporating these data types into a coherent analysis pipeline is challenging and time-consuming, especially if research protocols change or new data types are added. Here, we introduce Begonia, a MATLAB-based data management and analysis toolbox tailored for the analyses of astrocytic Ca2+ signals in conjunction with behavioral data. The analysis suite includes an automatic, event-based algorithm with few input parameters that can capture a high level of spatiotemporal complexity of astrocytic Ca2+ signals. The toolbox enables the experimentalist to quantify astrocytic Ca2+ signals in a precise and unbiased way and combine them with other types of time series data.

5.
Nat Commun ; 11(1): 3240, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32632168

ABSTRACT

Astrocytic Ca2+ signaling has been intensively studied in health and disease but has not been quantified during natural sleep. Here, we employ an activity-based algorithm to assess astrocytic Ca2+ signals in the neocortex of awake and naturally sleeping mice while monitoring neuronal Ca2+ activity, brain rhythms and behavior. We show that astrocytic Ca2+ signals exhibit distinct features across the sleep-wake cycle and are reduced during sleep compared to wakefulness. Moreover, an increase in astrocytic Ca2+ signaling precedes transitions from slow wave sleep to wakefulness, with a peak upon awakening exceeding the levels during whisking and locomotion. Finally, genetic ablation of an important astrocytic Ca2+ signaling pathway impairs slow wave sleep and results in an increased number of microarousals, abnormal brain rhythms, and an increased frequency of slow wave sleep state transitions and sleep spindles. Our findings demonstrate an essential role for astrocytic Ca2+ signaling in regulating slow wave sleep.


Subject(s)
Astrocytes/metabolism , Calcium Signaling , Sleep, Slow-Wave/physiology , Animals , Mice , Wakefulness/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...