Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers Med ; 8(4)2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30544975

ABSTRACT

The organic cation transporter 1 (OCT1, SLC22A1) is strongly expressed in the human liver and facilitates the hepatic uptake of drugs such as morphine, metformin, tropisetron, sumatriptan and fenoterol and of endogenous substances such as thiamine. OCT1 expression is inter-individually highly variable. Here, we analyzed SNPs in the OCT1 promoter concerning their potential contribution to the variability in OCT1 expression. Using electrophoretic mobility shift and luciferase reporter gene assays in HepG2, Hep3B, and Huh7 cell lines, we identified the SNPs -1795G>A (rs6935207) and -201C>G (rs58812592) as having effects on transcription factor binding and/or promoter activity. The A-allele of the -1795G>A SNP showed allele-specific binding of the transcription factor NF-Y leading to 2.5-fold increased enhancer activity of the artificial SV40 promoter. However, the -1795G>A SNP showed no significant effects on the native OCT1 promoter activity. Furthermore, the -1795G>A SNP was not associated with the pharmacokinetics of metformin, fenoterol, sumatriptan and proguanil in healthy individuals or tropisetron efficacy in patients undergoing chemotherapy. Allele-dependent differences in USF1/2 binding and nearly total loss in OCT1 promoter activity were detected for the G-allele of -201C>G, but the SNP is apparently very rare. In conclusion, common OCT1 promoter SNPs have only minor effects on OCT1 expression.

2.
Article in English | MEDLINE | ID: mdl-29966764

ABSTRACT

Obesity is characterized by the excess of body fat leading to impaired health. Abdominal fat is particularly harmful and is associated with cardiovascular and metabolic diseases and cancer. In contrast, subcutaneous fat is generally considered less detrimental. The mechanisms that establish the cellular characteristics of these distinct fat types in humans are not fully understood. Here, we explored whether differences of their gene regulatory mechanisms can be investigated in vitro. For this purpose, we in vitro differentiated human visceral and subcutaneous pre-adipocytes into mature adipocytes and obtained their gene expression profiles and genome-wide H3K4me3, H3K9me3 and H3K27ac patterns. Subsequently, we compared those data with public gene expression data from visceral and subcutaneous fat tissues. We found that the in vitro differentiated adipocytes show significant differences in their transcriptional landscapes, which correlate with biological pathways that are characteristic for visceral and subcutaneous fat tissues, respectively. Unexpectedly, visceral adipocyte enhancers are rich on motifs for transcription factors involved in the Hippo-YAP pathway, cell growth and inflammation, which are not typically associated with adipocyte function. In contrast, enhancers of subcutaneous adipocytes show enrichment of motifs for common adipogenic transcription factors, such as C/EBP, NFI and PPARγ, implicating substantially disparate gene regulatory networks in visceral and subcutaneous adipocytes. Consistent with the role in obesity, predominantly the histone modification pattern of visceral adipocytes is linked to obesity-associated diseases. Thus, this work suggests that the properties of visceral and subcutaneous fat tissues can be studied in vitro and provides preliminary insights into their gene regulatory processes.

3.
Neurogenetics ; 19(3): 151-156, 2018 08.
Article in English | MEDLINE | ID: mdl-29808465

ABSTRACT

The human WWOX (WW domain-containing oxidoreductase) gene, originally known as a tumor suppressor gene, has been shown to be important for brain function and development. In recent years, mutations in WWOX have been associated with a wide phenotypic spectrum of autosomal recessively inherited neurodevelopmental disorders. Whole exome sequencing was completed followed by Sanger sequencing to verify segregation of the identified variants. Functional WWOX analysis was performed in fibroblasts of one patient. Transcription and translation were assessed by quantitative real-time PCR and Western blotting. We report two related patients who presented with early epilepsy refractory to treatment, progressive microcephaly, profound developmental delay, and brain MRI abnormalities. Additionally, one of the patients showed bilateral optic atrophy. Whole exome sequencing revealed homozygosity for a novel missense variant affecting the evolutionary conserved amino acid Gln230 in the catalytic short-chain dehydrogenase/reductase (SDR) domain of WWOX in both girls. Functional studies showed normal levels of WWOX transcripts but absence of WWOX protein. To our knowledge, our patients are the first individuals presenting the more severe end of the phenotypic spectrum of WWOX deficiency, although they were only affected by a single missense variant of WWOX. This could be explained by the functional data indicating an impaired translation or premature degradation of the WWOX protein.


Subject(s)
Developmental Disabilities/genetics , Mutation, Missense , Spasms, Infantile/genetics , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , WW Domain-Containing Oxidoreductase/deficiency , WW Domain-Containing Oxidoreductase/genetics , Afghanistan , Age of Onset , Cells, Cultured , Child , Consanguinity , Developmental Disabilities/complications , Epilepsy/complications , Epilepsy/genetics , Family , Female , HEK293 Cells , Humans , Infant, Newborn , Pedigree , Protein Domains/genetics , RNA Stability/genetics , Severity of Illness Index , Spasms, Infantile/complications , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , WW Domain-Containing Oxidoreductase/chemistry , WW Domain-Containing Oxidoreductase/metabolism
5.
J Pharmacol Exp Ther ; 347(1): 181-92, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23922447

ABSTRACT

The organic cation transporter 1 (OCT1), also known as solute carrier family 22 member 1, is strongly and specifically expressed in the human liver. Here we show that the hepatocyte nuclear factor 1 (HNF1) regulates OCT1 transcription and contributes to the strong, liver-specific expression of OCT1. Bioinformatic analyses revealed strong conservation of HNF1 binding motifs in an evolutionary conserved region (ECR) in intron 1 of the OCT1 gene. Electrophoretic mobility shift and chromatin immunoprecipitation assays confirmed the specific binding of HNF1 to the intron 1 ECR. In reporter gene assays performed in HepG2 cells, the intron 1 ECR increased SV40 promoter activity by 22-fold and OCT1 promoter activity by 13-fold. The increase was reversed when the HNF1 binding sites in the intron 1 ECR were mutated or the endogenous HNF1α expression was downregulated with small interfering RNA. Following HNF1α overexpression in Huh7 cells, the intron 1 ECR increased SV40 promoter activity by 11-fold and OCT1 promoter activity by 6-fold. Without HNF1α overexpression, the increases were only 3- and 2-fold, respectively. Finally, in human liver samples, high HNF1 expression was significantly correlated with high OCT1 expression (r = 0.48, P = 0.002, n = 40). In conclusion, HNF1 is a strong regulator of OCT1 expression. It remains to be determined whether genetic variants, disease conditions, or drugs that affect HNF1 activity may affect the pharmacokinetics and efficacy of OCT1-transported drugs such as morphine, tropisetron, ondansetron, tramadol, and metformin. Beyond OCT1, this study demonstrates the validity and usefulness of interspecies comparisons in the discovery of functionally relevant genomic sequences.


Subject(s)
Conserved Sequence/genetics , Evolution, Molecular , Hepatocyte Nuclear Factor 1/genetics , Introns/genetics , Organic Cation Transporter 1/biosynthesis , Organic Cation Transporter 1/genetics , Adolescent , Adult , Aged , Animals , Cattle , Child , Child, Preschool , Dogs , Female , Gene Expression Regulation , Hep G2 Cells , Hepatocytes/physiology , Humans , Macaca mulatta , Male , Mice , Middle Aged , Pan troglodytes , Protein Binding/genetics , Rats , Species Specificity , Transcription, Genetic , Young Adult
6.
Pharmacogenet Genomics ; 18(3): 219-30, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18300944

ABSTRACT

OBJECTIVE: The HTR3B gene encodes the B-subunit of the type 3 serotonin receptor (5-HT3). A -100_-102delAAG deletion in the promoter region has been associated with poor response to antiemetic medication and susceptibility to bipolar affective disorders. The molecular mechanisms underlying these associations, however, remained unclear. METHODS: We performed electrophoretic mobility shift and luciferase reporter gene assays to elucidate the effect of this polymorphism on the HTR3B promoter activity in PC-12 and HEK293 cells. The reporter constructs carried a 2171 bp fragment of the native HTR3B promoter or 30 bp of the polymorphic locus in tandem triplication upstream of the thymidine kinase minimal promoter. RESULTS: Deletion mapping indicated that the sequence around the -100_-102delAAG polymorphism had significant promoter activity. Electrophoretic mobility shift assays indicated differential binding of nuclear proteins to the polymorphic DNA region with stronger binding to the insertion than to the deletion allele. The activity of the native promoter carrying the deletion allele was 25% higher in PC-12 (P=0.016) and 40% higher in HEK cells (P=0.016) compared with the respective insertion construct. Constructs carrying the deletion allele in tandem triplicates showed 43% (PC-12 cells, P=0.002) and 28% (HEK293 cells, P=0.015) higher activity than those carrying the insertion allele. The polymorphism was not linked with known amino acid substitutions in HTR3A and HTR3B. CONCLUSIONS: The -100_-102delAAG 3 bp deletion increases the HTR3B promoter activity in vitro. The consequences of this for the structure and the function of the resulting 5-HT3 receptors remain to be elucidated.


Subject(s)
Promoter Regions, Genetic , Receptors, Serotonin/genetics , Sequence Deletion , Animals , Base Sequence , Cells , DNA/genetics , DNA Primers/genetics , Electrophoretic Mobility Shift Assay , Genes, Reporter , Haplotypes , Humans , Linkage Disequilibrium , Luciferases/genetics , Molecular Sequence Data , PC12 Cells , Pharmacogenetics , Rats , Receptors, Serotonin/metabolism , Receptors, Serotonin, 5-HT3 , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...