Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(16): e36284, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39262974

ABSTRACT

The relevance of atmospheric particulate matter (PM) to health and the environment is widely known. Long-term studies are necessary for understanding current and future trends in air quality management. This study aimed to assess the long-term PM concentration in the Magdalena department (Colombia). It focused on the following aspects: i) spatiotemporal patterns, ii) correlation with meteorology, iii) compliance with standards, iv) temporal trends over time, v) impact on health, and vi) impact of policy management. Fifteen stations from 2003 to 2021 were analyzed. Spearman-Rho and Mann-Kendall methods were used to correlate concentration with meteorology. The temporal and five-year moving trends were determined, and the trend magnitude was calculated using Teil-Sen. Acute respiratory infection odd ratios and risk of cancer associated with PM concentration were used to assess the impact on health. The study found that the maximum PM10 concentration was 194.5 µg/m3, and the minimum was 3 µg/m3. In all stations, a negative correlation was observed between PM10 and atmospheric water content, while the wind speed and temperature showed a positive correlation. The global trends indicated an increasing value, with five fluctuations in five-year moving trends, consistent with PM sources and socio-economic behavior. PM concentrations were found to comply with national standard; however, the results showed a potential impact on population health. The management regulation had a limited impact on increasing concentration. Considering that national regulations tend to converge towards WHO standards, the study area must create a management program to ensure compliance.

2.
Environ Res ; 191: 109938, 2020 12.
Article in English | MEDLINE | ID: mdl-32858479

ABSTRACT

We have evaluated the spread of SARS-CoV-2 through Latin America and the Caribbean (LAC) region by means of a correlation between climate and air pollution indicators, namely, average temperature, minimum temperature, maximum temperature, rainfall, average relative humidity, wind speed, and air pollution indicators PM10, PM2.5, and NO2 with the COVID-19 daily new cases and deaths. The study focuses in the following LAC cities: Mexico City (Mexico), Santo Domingo (Dominican Republic), San Juan (Puerto Rico), Bogotá (Colombia), Guayaquil (Ecuador), Manaus (Brazil), Lima (Perú), Santiago (Chile), São Paulo (Brazil) and Buenos Aires (Argentina). The results show that average temperature, minimum temperature, and air quality were significantly associated with the spread of COVID-19 in LAC. Additionally, humidity, wind speed and rainfall showed a significant relationship with daily cases, total cases and mortality for various cities. Income inequality and poverty levels were also considered as a variable for qualitative analysis. Our findings suggest that and income inequality and poverty levels in the cities analyzed were related to the spread of COVID-19 positive and negative, respectively. These results might help decision-makers to design future strategies to tackle the spread of COVID-19 in LAC and around the world.


Subject(s)
Air Pollution , Climate , Coronavirus Infections , Pandemics , Pneumonia, Viral , Poverty , Argentina/epidemiology , Betacoronavirus , Brazil , COVID-19 , Caribbean Region , Chile , Cities , Colombia , Dominican Republic , Ecuador , Humans , Income , Latin America , Mexico , Peru , SARS-CoV-2
3.
Environ Sci Process Impacts ; 22(7): 1491-1501, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32530440

ABSTRACT

This study presents the first local measurements of metals in snow from the Argentine Central Andes. Cu, Pb and Zn were selected as specific tracers of anthropogenic local emission sources in the study area. Snow samples were collected during winter (2014, 2015 and 2016) at two sites with different characteristics: Punta de Vacas and Vallecitos. The samples were analyzed by ICP-MS, and the average concentrations found were 1.4 µg L-1 (Cu), 2.2 µg L-1 (Pb) and 14.2 µg L-1 (Zn) in the snow samples from Vallecitos, and 5.3 µg L-1 (Cu), 2.6 µg L-1 (Pb) and 24.0 µg L-1 (Zn) in the snow samples from Punta de Vacas. These data and the snowfall amount in each sampling site were statistically analyzed. Results suggested that the levels of metals in the snow are influenced not only by the atmospheric concentrations, but also by the amount of precipitated snow. Additionally, an atmospheric dispersion model, CALPUFF, was applied in the study area to determine the origin of the studied metals and to understand the spatial distribution pattern of the concentrations found. Results showed that the metal atmospheric loads in the study area originated from local sources, especially vehicular traffic and mining. This work represents an important contribution to the knowledge and preservation of the local Andean cryosphere, and it could be used as an input to develop protection policies in the area through the combination of different and complementary tools for the evaluation of air quality.


Subject(s)
Air Pollution , Metals, Heavy , Snow , Trace Elements , Air Movements , Environmental Monitoring , Metals , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL