Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nat Med ; 30(5): 1406-1415, 2024 May.
Article in English | MEDLINE | ID: mdl-38745011

ABSTRACT

GRN mutations cause progranulin haploinsufficiency, which eventually leads to frontotemporal dementia (FTD-GRN). PR006 is an investigational gene therapy delivering the granulin gene (GRN) using an adeno-associated virus serotype 9 (AAV9) vector. In non-clinical studies, PR006 transduced neurons derived from induced pluripotent stem cells of patients with FTD-GRN, resulted in progranulin expression and improvement of lipofuscin, lysosomal and neuroinflammation pathologies in Grn-knockout mice, and was well tolerated except for minimal, asymptomatic dorsal root ganglionopathy in non-human primates. We initiated a first-in-human phase 1/2 open-label trial. Here we report results of a pre-specified interim analysis triggered with the last treated patient of the low-dose cohort (n = 6) reaching the 12-month follow-up timepoint. We also include preliminary data from the mid-dose cohort (n = 7). Primary endpoints were safety, immunogenicity and change in progranulin levels in cerebrospinal fluid (CSF) and blood. Secondary endpoints were Clinical Dementia Rating (CDR) plus National Alzheimer's Disease Coordinating Center (NACC) Frontotemporal Lobar Degeneration (FTLD) rating scale and levels of neurofilament light chain (NfL). One-time administration of PR006 into the cisterna magna was generally safe and well tolerated. All patients developed treatment-emergent anti-AAV9 antibodies in the CSF, but none developed anti-progranulin antibodies. CSF pleocytosis was the most common PR006-related adverse event. Twelve serious adverse events occurred, mostly unrelated to PR006. Deep vein thrombosis developed in three patients. There was one death (unrelated) occurring 18 months after treatment. CSF progranulin increased after PR006 treatment in all patients; blood progranulin increased in most patients but only transiently. NfL levels transiently increased after PR006 treatment, likely reflecting dorsal root ganglia toxicity. Progression rates, based on the CDR scale, were within the broad ranges reported for patients with FTD. These data provide preliminary insights into the safety and bioactivity of PR006. Longer follow-up and additional studies are needed to confirm the safety and potential efficacy of PR006. ClinicalTrials.gov identifier: NCT04408625 .


Subject(s)
Dependovirus , Frontotemporal Dementia , Genetic Therapy , Progranulins , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/therapy , Frontotemporal Dementia/cerebrospinal fluid , Progranulins/genetics , Genetic Therapy/adverse effects , Genetic Therapy/methods , Dependovirus/genetics , Middle Aged , Female , Male , Aged , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/cerebrospinal fluid , Genetic Vectors , Animals , Treatment Outcome , Translational Research, Biomedical , Mice , Neurofilament Proteins/genetics , Neurofilament Proteins/cerebrospinal fluid , Neurofilament Proteins/blood
2.
Sci Adv ; 10(1): eadi2689, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38170777

ABSTRACT

Defects in adipocyte lipolysis drive multiple aspects of cardiometabolic disease, but the transcriptional framework controlling this process has not been established. To address this, we performed a targeted perturbation screen in primary human adipocytes. Our analyses identified 37 transcriptional regulators of lipid mobilization, which we classified as (i) transcription factors, (ii) histone chaperones, and (iii) mRNA processing proteins. On the basis of its strong relationship with multiple readouts of lipolysis in patient samples, we performed mechanistic studies on one hit, ZNF189, which encodes the zinc finger protein 189. Using mass spectrometry and chromatin profiling techniques, we show that ZNF189 interacts with the tripartite motif family member TRIM28 and represses the transcription of an adipocyte-specific isoform of phosphodiesterase 1B (PDE1B2). The regulation of lipid mobilization by ZNF189 requires PDE1B2, and the overexpression of PDE1B2 is sufficient to attenuate hormone-stimulated lipolysis. Thus, our work identifies the ZNF189-PDE1B2 axis as a determinant of human adipocyte lipolysis and highlights a link between chromatin architecture and lipid mobilization.


Subject(s)
Adipocytes , Lipid Mobilization , Humans , Adipocytes/metabolism , Lipolysis/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Chromatin/metabolism
3.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203300

ABSTRACT

Biomarkers are molecules that can be used to observe changes in an individual's biochemical or medical status and provide information to aid diagnosis or treatment decisions. Dysregulation in lipid metabolism in the brain is a major risk factor for many neurodegenerative disorders, including frontotemporal dementia, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Thus, there is a growing interest in using lipids as biomarkers in neurodegenerative diseases, with the anionic phospholipid bis(monoacylglycerol)phosphate and (glyco-)sphingolipids being the most promising lipid classes thus far. In this review, we provide a general overview of lipid biology, provide examples of abnormal lysosomal lipid metabolism in neurodegenerative diseases, and discuss how these insights might offer novel and promising opportunities in biomarker development and therapeutic discovery. Finally, we discuss the challenges and opportunities of lipid biomarkers and biomarker panels in diagnosis, prognosis, and/or treatment response in the clinic.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Neurodegenerative Diseases/diagnosis , Alzheimer Disease/diagnosis , Biomarkers , Monoglycerides
4.
Nat Commun ; 13(1): 5924, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207292

ABSTRACT

Haploinsufficiency of GRN causes frontotemporal dementia (FTD). The GRN locus produces progranulin (PGRN), which is cleaved to lysosomal granulin polypeptides. The function of lysosomal granulins and why their absence causes neurodegeneration are unclear. Here we discover that PGRN-deficient human cells and murine brains, as well as human frontal lobes from GRN-mutation FTD patients have increased levels of gangliosides, glycosphingolipids that contain sialic acid. In these cells and tissues, levels of lysosomal enzymes that catabolize gangliosides were normal, but levels of bis(monoacylglycero)phosphates (BMP), lipids required for ganglioside catabolism, were reduced with PGRN deficiency. Our findings indicate that granulins are required to maintain BMP levels to support ganglioside catabolism, and that PGRN deficiency in lysosomes leads to gangliosidosis. Lysosomal ganglioside accumulation may contribute to neuroinflammation and neurodegeneration susceptibility observed in FTD due to PGRN deficiency and other neurodegenerative diseases.


Subject(s)
Frontotemporal Dementia , Gangliosidoses , Progranulins/metabolism , Animals , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Gangliosides/metabolism , Gangliosidoses/metabolism , Granulins/metabolism , Humans , Lysosomes/metabolism , Mice , N-Acetylneuraminic Acid/metabolism , Phosphates/metabolism , Progranulins/genetics
5.
Dev Cell ; 57(3): 387-397.e4, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35134345

ABSTRACT

Lipid droplets (LDs) are organelles of cellular lipid storage with fundamental roles in energy metabolism and cell membrane homeostasis. There has been an explosion of research into the biology of LDs, in part due to their relevance in diseases of lipid storage, such as atherosclerosis, obesity, type 2 diabetes, and hepatic steatosis. Consequently, there is an increasing need for a resource that combines datasets from systematic analyses of LD biology. Here, we integrate high-confidence, systematically generated human, mouse, and fly data from studies on LDs in the framework of an online platform named the "Lipid Droplet Knowledge Portal" (https://lipiddroplet.org/). This scalable and interactive portal includes comprehensive datasets, across a variety of cell types, for LD biology, including transcriptional profiles of induced lipid storage, organellar proteomics, genome-wide screen phenotypes, and ties to human genetics. This resource is a powerful platform that can be utilized to identify determinants of lipid storage.


Subject(s)
Databases as Topic , Lipid Droplets/metabolism , Animals , Cholesterol Esters/metabolism , Data Mining , Genome , Humans , Inflammation/pathology , Lipid Metabolism , Liver/metabolism , Male , Mice, Inbred C57BL , Phenotype , Phosphorylation , RNA Interference
6.
Sci Transl Med ; 13(583)2021 03 03.
Article in English | MEDLINE | ID: mdl-33658354

ABSTRACT

The E4 allele of the apolipoprotein E gene (APOE) has been established as a genetic risk factor for many diseases including cardiovascular diseases and Alzheimer's disease (AD), yet its mechanism of action remains poorly understood. APOE is a lipid transport protein, and the dysregulation of lipids has recently emerged as a key feature of several neurodegenerative diseases including AD. However, it is unclear how APOE4 perturbs the intracellular lipid state. Here, we report that APOE4, but not APOE3, disrupted the cellular lipidomes of human induced pluripotent stem cell (iPSC)-derived astrocytes generated from fibroblasts of APOE4 or APOE3 carriers, and of yeast expressing human APOE isoforms. We combined lipidomics and unbiased genome-wide screens in yeast with functional and genetic characterization to demonstrate that human APOE4 induced altered lipid homeostasis. These changes resulted in increased unsaturation of fatty acids and accumulation of intracellular lipid droplets both in yeast and in APOE4-expressing human iPSC-derived astrocytes. We then identified genetic and chemical modulators of this lipid disruption. We showed that supplementation of the culture medium with choline (a soluble phospholipid precursor) restored the cellular lipidome to its basal state in APOE4-expressing human iPSC-derived astrocytes and in yeast expressing human APOE4 Our study illuminates key molecular disruptions in lipid metabolism that may contribute to the disease risk linked to the APOE4 genotype. Our study suggests that manipulating lipid metabolism could be a therapeutic approach to help alleviate the consequences of carrying the APOE4 allele.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Apolipoproteins E , Homeostasis , Humans , Neuroglia
7.
J Cell Biol ; 219(10)2020 10 05.
Article in English | MEDLINE | ID: mdl-32915949

ABSTRACT

The endoplasmic reticulum is a cellular hub of lipid metabolism, coordinating lipid synthesis with continuous changes in metabolic flux. Maintaining ER lipid homeostasis despite these fluctuations is crucial to cell function and viability. Here, we identify a novel mechanism that is crucial for normal ER lipid metabolism and protects the ER from dysfunction. We identify the molecular function of the evolutionarily conserved ER protein FIT2 as a fatty acyl-coenzyme A (CoA) diphosphatase that hydrolyzes fatty acyl-CoA to yield acyl 4'-phosphopantetheine. This activity of FIT2, which is predicted to be active in the ER lumen, is required in yeast and mammalian cells for maintaining ER structure, protecting against ER stress, and enabling normal lipid storage in lipid droplets. Our findings thus solve the long-standing mystery of the molecular function of FIT2 and highlight the maintenance of optimal fatty acyl-CoA levels as key to ER homeostasis.


Subject(s)
Acyl Coenzyme A/genetics , Endoplasmic Reticulum/genetics , Membrane Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Homeostasis/genetics , Humans , Lipid Droplets/metabolism , Lipid Metabolism/genetics , Saccharomyces cerevisiae/genetics
8.
Proc Natl Acad Sci U S A ; 117(19): 10565-10574, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32345721

ABSTRACT

Numerous mutations that impair retrograde membrane trafficking between endosomes and the Golgi apparatus lead to neurodegenerative diseases. For example, mutations in the endosomal retromer complex are implicated in Alzheimer's and Parkinson's diseases, and mutations of the Golgi-associated retrograde protein (GARP) complex cause progressive cerebello-cerebral atrophy type 2 (PCCA2). However, how these mutations cause neurodegeneration is unknown. GARP mutations in yeast, including one causing PCCA2, result in sphingolipid abnormalities and impaired cell growth that are corrected by treatment with myriocin, a sphingolipid synthesis inhibitor, suggesting that alterations in sphingolipid metabolism contribute to cell dysfunction and death. Here we tested this hypothesis in wobbler mice, a murine model with a homozygous partial loss-of-function mutation in Vps54 (GARP protein) that causes motor neuron disease. Cytotoxic sphingoid long-chain bases accumulated in embryonic fibroblasts and spinal cords from wobbler mice. Remarkably, chronic treatment of wobbler mice with myriocin markedly improved their wellness scores, grip strength, neuropathology, and survival. Proteomic analyses of wobbler fibroblasts revealed extensive missorting of lysosomal proteins, including sphingolipid catabolism enzymes, to the Golgi compartment, which may contribute to the sphingolipid abnormalities. Our findings establish that altered sphingolipid metabolism due to GARP mutations contributes to neurodegeneration and suggest that inhibiting sphingolipid synthesis might provide a useful strategy for treating these disorders.


Subject(s)
Membrane Proteins/genetics , Membrane Proteins/metabolism , Sphingolipids/metabolism , Animals , Disease Models, Animal , Endosomes/metabolism , Fatty Acids, Monounsaturated/pharmacology , Female , Fibroblasts/metabolism , Golgi Apparatus/metabolism , Male , Mice , Mice, Neurologic Mutants , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Motor Neuron Disease/pathology , Motor Neurons/metabolism , Mouse Embryonic Stem Cells , Mutation , Nervous System Malformations/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Protein Transport , Proteomics , Vesicular Transport Proteins/metabolism
9.
J Am Coll Cardiol ; 74(14): 1741-1755, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31582133

ABSTRACT

BACKGROUND: Stress cardiac magnetic resonance imaging (CMR) has demonstrated excellent diagnostic and prognostic value in single-center studies. OBJECTIVES: This study sought to investigate the prognostic value of stress CMR and downstream costs from subsequent cardiac testing in a retrospective multicenter study in the United States. METHODS: In this retrospective study, consecutive patients from 13 centers across 11 states who presented with a chest pain syndrome and were referred for stress CMR were followed for a target period of 4 years. The authors associated CMR findings with a primary outcome of cardiovascular death or nonfatal myocardial infarction using competing risk-adjusted regression models and downstream costs of ischemia testing using published Medicare national payment rates. RESULTS: In this study, 2,349 patients (63 ± 11 years of age, 47% female) were followed for a median of 5.4 years. Patients with no ischemia or late gadolinium enhancement (LGE) by CMR, observed in 1,583 patients (67%), experienced low annualized rates of primary outcome (<1%) and coronary revascularization (1% to 3%), across all years of study follow-up. In contrast, patients with ischemia+/LGE+ experienced a >4-fold higher annual primary outcome rate and a >10-fold higher rate of coronary revascularization during the first year after CMR. Patients with ischemia and LGE both negative had low average annual cost spent on ischemia testing across all years of follow-up, and this pattern was similar across the 4 practice environments of the participating centers. CONCLUSIONS: In a multicenter U.S. cohort with stable chest pain syndromes, stress CMR performed at experienced centers offers effective cardiac prognostication. Patients without CMR ischemia or LGE experienced a low incidence of cardiac events, little need for coronary revascularization, and low spending on subsequent ischemia testing. (Stress CMR Perfusion Imaging in the United States [SPINS]: A Society for Cardiovascular Resonance Registry Study; NCT03192891).


Subject(s)
Chest Pain/diagnostic imaging , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Myocardial Perfusion Imaging/methods , Aged , Chest Pain/epidemiology , Coronary Artery Disease/epidemiology , Female , Humans , Male , Middle Aged , Retrospective Studies
10.
Hepatology ; 70(6): 1972-1985, 2019 12.
Article in English | MEDLINE | ID: mdl-31081165

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation in hepatocytes and represents a huge public health problem owing to its propensity to progress to nonalcoholic steatohepatitis, fibrosis, and liver failure. The lipids stored in hepatic steatosis (HS) are primarily triglycerides (TGs) synthesized by two acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. Either DGAT1 or DGAT2 catalyzes this reaction, and these enzymes have been suggested to differentially utilize exogenous or endogenously synthesized fatty acids, respectively. DGAT2 has been linked to storage of fatty acids from de novo lipogenesis, a process increased in NAFLD. However, whether DGAT2 is more responsible for lipid accumulation in NAFLD and progression to fibrosis is currently unknown. Also, it is unresolved whether DGAT2 can be safely inhibited as a therapy for NAFLD. Here, we induced NAFLD-like disease in mice by feeding a diet rich in fructose, saturated fat, and cholesterol and found that hepatocyte-specific Dgat2 deficiency reduced expression of de novo lipogenesis genes and lowered liver TGs by ~70%. Importantly, the reduction in steatosis was not accompanied by increased inflammation or fibrosis, and insulin and glucose metabolism were unchanged. Conclusion: This study suggests that hepatic DGAT2 deficiency successfully reduces diet-induced HS and supports development of DGAT2 inhibitors as a therapeutic strategy for treating NAFLD and preventing downstream consequences.


Subject(s)
Diacylglycerol O-Acyltransferase/physiology , Hepatitis/etiology , Hepatocytes/enzymology , Liver Cirrhosis, Experimental/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Animals , Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Diacylglycerol O-Acyltransferase/deficiency , Dietary Fats/administration & dosage , Mice , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/drug therapy , Triglycerides/metabolism
11.
Mol Cell ; 74(1): 32-44.e8, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30846318

ABSTRACT

Excessive levels of saturated fatty acids are toxic to cells, although the basis for this lipotoxicity remains incompletely understood. Here, we analyzed the transcriptome, lipidome, and genetic interactions of human leukemia cells exposed to palmitate. Palmitate treatment increased saturated glycerolipids, accompanied by a transcriptional stress response, including upregulation of the endoplasmic reticulum (ER) stress response. A comprehensive genome-wide short hairpin RNA (shRNA) screen identified >350 genes modulating lipotoxicity. Among previously unknown genetic modifiers of lipotoxicity, depletion of RNF213, a putative ubiquitin ligase mutated in Moyamoya vascular disease, protected cells from lipotoxicity. On a broader level, integration of our comprehensive datasets revealed that changes in di-saturated glycerolipids, but not other lipid classes, are central to lipotoxicity in this model. Consistent with this, inhibition of ER-localized glycerol-3-phosphate acyltransferase activity protected from all aspects of lipotoxicity. Identification of genes modulating the response to saturated fatty acids may reveal novel therapeutic strategies for treating metabolic diseases linked to lipotoxicity.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum/drug effects , Glycerides/metabolism , Lipid Metabolism/drug effects , Palmitic Acid/toxicity , Acyltransferases/genetics , Acyltransferases/metabolism , Adenosine Triphosphatases/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation, Enzymologic , HeLa Cells , Hep G2 Cells , Humans , K562 Cells , Lipid Metabolism/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Transcriptome , Ubiquitin-Protein Ligases/metabolism
12.
PLoS Biol ; 16(11): e2006951, 2018 11.
Article in English | MEDLINE | ID: mdl-30481169

ABSTRACT

Glycosylation is a fundamental modification of proteins and membrane lipids. Toxins that utilize glycans as their receptors have served as powerful tools to identify key players in glycosylation processes. Here, we carried out Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9-mediated genome-wide loss-of-function screens using two related bacterial toxins, Shiga-like toxins (Stxs) 1 and 2, which use a specific glycolipid, globotriaosylceramide (Gb3), as receptors, and the plant toxin ricin, which recognizes a broad range of glycans. The Stxs screens identified major glycosyltransferases (GTs) and transporters involved in Gb3 biosynthesis, while the ricin screen identified GTs and transporters involved in N-linked protein glycosylation and fucosylation. The screens also identified lysosomal-associated protein transmembrane 4 alpha (LAPTM4A), a poorly characterized four-pass membrane protein, as a factor specifically required for Stxs. Mass spectrometry analysis of glycolipids and their precursors demonstrates that LAPTM4A knockout (KO) cells lack Gb3 biosynthesis. This requirement of LAPTM4A for Gb3 synthesis is not shared by its homolog lysosomal-associated protein transmembrane 4 beta (LAPTM4B), and switching the domains between them determined that the second luminal domain of LAPTM4A is required, potentially acting as a specific "activator" for the GT that synthesizes Gb3. These screens also revealed two Golgi proteins, Transmembrane protein 165 (TMEM165) and Transmembrane 9 superfamily member 2 (TM9SF2), as shared factors required for both Stxs and ricin. TMEM165 KO and TM9SF2 KO cells both showed a reduction in not only Gb3 but also other glycosphingolipids, suggesting that they are required for maintaining proper levels of glycosylation in general in the Golgi. In addition, TM9SF2 KO cells also showed defective endosomal trafficking. These studies reveal key Golgi proteins critical for regulating glycosylation and glycolipid synthesis and provide novel therapeutic targets for blocking Stxs and ricin toxicity.


Subject(s)
Ricin/genetics , Shiga Toxins/genetics , Bacterial Toxins/metabolism , CRISPR-Cas Systems , Endosomes/metabolism , Genome-Wide Association Study/methods , Glycolipids/metabolism , Glycosphingolipids , Glycosylation , Golgi Apparatus/metabolism , Golgi Apparatus/physiology , HEK293 Cells , HeLa Cells , Humans , Loss of Function Mutation/genetics , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/physiology , Oncogene Proteins/metabolism , Protein Transport , Ricin/metabolism , Shiga Toxins/metabolism , Trihexosylceramides/metabolism , Trihexosylceramides/physiology
13.
Sci Rep ; 8(1): 6398, 2018 04 23.
Article in English | MEDLINE | ID: mdl-29686301

ABSTRACT

Proper cholesterol transport is crucial for the functionality of cells. In C. elegans, certain cholesterol derivatives called dafachronic acids (DAs) govern the entry into diapause. In their absence, worms form a developmentally arrested dauer larva. Thus, cholesterol transport to appropriate places for DA biosynthesis warrants the reproductive growth. Recently, we discovered a novel class of glycosphingolipids, PEGCs, required for cholesterol mobilization/transport from internal storage pools. Here, we identify other components involved in this process. We found that strains lacking polyunsaturated fatty acids (PUFAs) undergo increased dauer arrest when grown without cholesterol. This correlates with the depletion of the PUFA-derived endocannabinoids 2-arachidonoyl glycerol and anandamide. Feeding of these endocannabinoids inhibits dauer formation caused by PUFAs deficiency or impaired cholesterol trafficking (e.g. in Niemann-Pick C1 or DAF-7/TGF-ß mutants). Moreover, in parallel to PEGCs, endocannabinoids abolish the arrest induced by cholesterol depletion. These findings reveal an unsuspected function of endocannabinoids in cholesterol trafficking regulation.


Subject(s)
Caenorhabditis elegans/metabolism , Cholesterol/metabolism , Endocannabinoids/metabolism , Homeostasis , Animals , Arachidonic Acid/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Fatty Acids, Unsaturated/metabolism , Larva/metabolism , Mutation
14.
Nat Chem Biol ; 13(6): 647-654, 2017 06.
Article in English | MEDLINE | ID: mdl-28369040

ABSTRACT

The nematode Caenorhabditis elegans requires exogenous cholesterol to survive and its depletion leads to early developmental arrest. Thus, tight regulation of cholesterol storage and distribution within the organism is indispensable. Here, we present a novel class of C. elegans phosphorylated glycosphingolipids, phosphoethanolamine glucosylceramides (PEGCs), capable of rescuing larval arrest induced by sterol starvation. We describe the total synthesis of a major PEGC species and demonstrate that the PEGC synthetic counterpart suppresses the dauer-constitutive phenotype of Niemann-Pick C1 (NPC1) and DAF-7/TGF-ß mutant worms caused by impaired intracellular sterol trafficking. PEGC biosynthesis depends on functional NPC1 and TGF-ß, indicating that these proteins control larval development at least partly through PEGC. Furthermore, glucosylceramide deficiency dramatically reduced PEGC amounts. However, the resulting developmental arrest could be rescued by oversaturation of food with cholesterol. Taken together, these data show that PEGC is essential for C. elegans development through its regulation of sterol mobilization.


Subject(s)
Caenorhabditis elegans/metabolism , Cholesterol/metabolism , Glycosphingolipids/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Chromatography, Liquid , Mass Spectrometry , Molecular Structure , Mutation , Phosphorylation
15.
PLoS One ; 11(12): e0167208, 2016.
Article in English | MEDLINE | ID: mdl-27907064

ABSTRACT

The free-living soil nematode Caenorhabditis elegans adapts its development to the availability of food. When food is scarce and population density is high, worms enter a developmentally arrested non-feeding diapause stage specialized for long-term survival called the dauer larva. When food becomes available, they exit from the dauer stage, resume growth and reproduction. It has been postulated that compound(s) present in food, referred to as the "food signal", promote exit from the dauer stage. In this study, we have identified NAD+ as a component of bacterial extract that promotes dauer exit. NAD+, when dissolved in alkaline medium, causes opening of the mouth and ingestion of food. We also show that to initiate exit from the dauer stage in response to NAD+ worms require production of serotonin. Thus, C. elegans can use redox cofactors produced by dietary organisms to sense food.


Subject(s)
Animal Nutritional Physiological Phenomena , Caenorhabditis elegans/physiology , Life Cycle Stages , NAD/metabolism , Animals , NADP/metabolism , Serotonin/metabolism
16.
Biol Open ; 3(8): 777-84, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25063200

ABSTRACT

Parkinson's disease is associated with mitochondrial decline in dopaminergic neurons of the substantia nigra. One of the genes linked with the onset of Parkinson's disease, DJ-1/PARK7, belongs to a novel glyoxalase family and influences mitochondrial activity. It has been assumed that glyoxalases fulfill this task by detoxifying aggressive aldehyde by-products of metabolism. Here we show that supplying either D-lactate or glycolate, products of DJ-1, rescues the requirement for the enzyme in maintenance of mitochondrial potential. We further show that glycolic acid and D-lactic acid can elevate lowered mitochondrial membrane potential caused by silencing PINK-1, another Parkinson's related gene, as well as by paraquat, an environmental toxin known to be linked with Parkinson's disease. We propose that DJ-1 and consequently its products are components of a novel pathway that stabilizes mitochondria during cellular stress. We go on to show that survival of cultured mesencephalic dopaminergic neurons, defective in Parkinson's disease, is enhanced by glycolate and D-lactate. Because glycolic and D-lactic acids occur naturally, they are therefore a potential therapeutic route for treatment or prevention of Parkinson's disease.

17.
Nat Chem Biol ; 10(4): 281-5, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24584102

ABSTRACT

Survival of nematode species depends on how successfully they disperse in the habitat and find a new host. As a new strategy for collective host finding in the nematode Pristionchus pacificus, dauer larvae synthesize an extremely long-chain polyunsaturated wax ester (nematoil) that covers the surface of the animal. The oily coat promotes congregation of up to one thousand individuals into stable 'dauer towers' that can reach a beetle host more easily.


Subject(s)
Host-Parasite Interactions/physiology , Nematoda/physiology , Waxes , Animals , Biological Evolution , Coleoptera/parasitology , Ecosystem , Esters , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/metabolism , Larva , Lipid Metabolism/physiology , Lipids/chemistry
18.
PLoS One ; 8(12): e82473, 2013.
Article in English | MEDLINE | ID: mdl-24324795

ABSTRACT

Massive water loss is a serious challenge for terrestrial animals, which usually has fatal consequences. However, some organisms have developed means to survive this stress by entering an ametabolic state called anhydrobiosis. The molecular and cellular mechanisms underlying this phenomenon are poorly understood. We recently showed that Caenorhabditis elegans dauer larva, an arrested stage specialized for survival in adverse conditions, is resistant to severe desiccation. However, this requires a preconditioning step at a mild desiccative environment to prepare the organism for harsher desiccation conditions. A systems approach was used to identify factors that are activated during this preconditioning. Using microarray analysis, proteomics, and bioinformatics, genes, proteins, and biochemical pathways that are upregulated during this process were identified. These pathways were validated via reverse genetics by testing the desiccation tolerances of mutants. These data show that the desiccation response is activated by hygrosensation (sensing the desiccative environment) via head neurons. This leads to elimination of reactive oxygen species and xenobiotics, expression of heat shock and intrinsically disordered proteins, polyamine utilization, and induction of fatty acid desaturation pathway. Remarkably, this response is specific and involves a small number of functional pathways, which represent the generic toolkit for anhydrobiosis in plants and animals.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Dehydration/genetics , Dehydration/metabolism , Larva/genetics , Larva/metabolism , Adaptation, Biological , Animals , Cluster Analysis , Cytoplasm/metabolism , Desiccation , Fatty Acids, Unsaturated/metabolism , Gene Expression Profiling , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Metabolic Networks and Pathways , Neurons/physiology , Polyamines/metabolism , Protein Biosynthesis , Protein Processing, Post-Translational , Proteome , Proteomics , Reactive Oxygen Species/metabolism , Sensation/physiology , Stress, Physiological , Transcriptome
19.
Org Biomol Chem ; 10(21): 4159-63, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22434373

ABSTRACT

A stereoselective synthesis of (25S)-Δ(1)-, (25S)-Δ(1,4)-, (25S)-Δ(1,7)-, (25S)-Δ(8(14))-, (25S)-Δ(4,6,8(14))-dafachronic acid, methyl (25S)-Δ(1,4)-dafachronate and (25S)-5α-hydroxy-3,6-dioxocholest-7-en-26-oic acid is described. (25S)-Δ(1,4)-Dafachronic acid and its methyl ester are natural products isolated from corals and have been obtained by synthesis for the first time. (25S)-5α-Hydroxy-3,6-dioxocholest-7-en-26-oic acid represents a promising synthetic precursor for cytotoxic marine steroids.


Subject(s)
Anthozoa/chemistry , Caenorhabditis elegans/drug effects , Cholestenes/chemical synthesis , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Cholestenes/pharmacology , Dose-Response Relationship, Drug , Esters/chemical synthesis , Esters/pharmacology , Larva/drug effects , Larva/genetics , Larva/growth & development , Molecular Structure , Receptors, Cytoplasmic and Nuclear/deficiency , Receptors, Cytoplasmic and Nuclear/genetics , Stereoisomerism , Structure-Activity Relationship
20.
BMC Genomics ; 12: 210, 2011 May 04.
Article in English | MEDLINE | ID: mdl-21539752

ABSTRACT

BACKGROUND: Burkholderia rhizoxinica is an intracellular symbiont of the phytopathogenic zygomycete Rhizopus microsporus, the causative agent of rice seedling blight. The endosymbiont produces the antimitotic macrolide rhizoxin for its host. It is vertically transmitted within vegetative spores and is essential for spore formation of the fungus. To shed light on the evolution and genetic potential of this model organism, we analysed the whole genome of B. rhizoxinica HKI 0454 - a type strain of endofungal Burkholderia species. RESULTS: The genome consists of a structurally conserved chromosome and two plasmids. Compared to free-living Burkholderia species, the genome is smaller in size and harbors less transcriptional regulator genes. Instead, we observed accumulation of transposons over the genome. Prediction of primary metabolic pathways and transporters suggests that endosymbionts consume host metabolites like citrate, but might deliver some amino acids and cofactors to the host. The rhizoxin biosynthesis gene cluster shows evolutionary traces of horizontal gene transfer. Furthermore, we analysed gene clusters coding for nonribosomal peptide synthetases (NRPS). Notably, B. rhizoxinica lacks common genes which are dedicated to quorum sensing systems, but is equipped with a large number of virulence-related factors and putative type III effectors. CONCLUSIONS: B. rhizoxinica is the first endofungal bacterium, whose genome has been sequenced. Here, we present models of evolution, metabolism and tools for host-symbiont interaction of the endofungal bacterium deduced from whole genome analyses. Genome size and structure suggest that B. rhizoxinica is in an early phase of adaptation to the intracellular lifestyle (genome in transition). By analysis of tranporters and metabolic pathways we predict how metabolites might be exchanged between the symbiont and its host. Gene clusters for biosynthesis of secondary metabolites represent novel targets for genomic mining of cryptic natural products. In silico analyses of virulence-associated genes, secreted proteins and effectors might inspire future studies on molecular mechanisms underlying bacterial-fungal interaction.


Subject(s)
Burkholderia/genetics , Burkholderia/physiology , Evolution, Molecular , Genomics/methods , Rhizopus , Symbiosis/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Burkholderia/drug effects , Burkholderia/metabolism , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple/genetics , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Genome, Bacterial/genetics , Lipopolysaccharides/metabolism , Pseudogenes/genetics , Rhizopus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...