Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 14(1): 179, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580625

ABSTRACT

Evidence suggests that depressive symptomatology is a consequence of network dysfunction rather than lesion pathology. We studied whole-brain functional connectivity using a Minimum Spanning Tree as a graph-theoretical approach. Furthermore, we examined functional connectivity in the Default Mode Network, the Frontolimbic Network (FLN), the Salience Network, and the Cognitive Control Network. All 183 elderly subjects underwent a comprehensive neuropsychological evaluation and a 3 Tesla brain MRI scan. To assess the potential presence of depressive symptoms, the 13-item version of the Beck Depression Inventory (BDI) or the Geriatric Depression Scale (GDS) was utilized. Participants were assigned into three groups based on their cognitive status: amnestic mild cognitive impairment (MCI), non-amnestic MCI, and healthy controls. Regarding affective symptoms, subjects were categorized into depressed and non-depressed groups. An increased mean eccentricity and network diameter were found in patients with depressive symptoms relative to non-depressed ones, and both measures showed correlations with depressive symptom severity. In patients with depressive symptoms, a functional hypoconnectivity was detected between the Anterior Cingulate Cortex (ACC) and the right amygdala in the FLN, which impairment correlated with depressive symptom severity. While no structural difference was found in subjects with depressive symptoms, the volume of the hippocampus and the thickness of the precuneus and the entorhinal cortex were decreased in subjects with MCI, especially in amnestic MCI. The increase in eccentricity and diameter indicates a more path-like functional network configuration that may lead to an impaired functional integration in depression, a possible cause of depressive symptomatology in the elderly.


Subject(s)
Cognitive Dysfunction , Depression , Humans , Aged , Depression/diagnostic imaging , Depression/psychology , Magnetic Resonance Imaging , Brain , Brain Mapping , Neuropsychological Tests
2.
Sci Rep ; 13(1): 22285, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38097674

ABSTRACT

Mild cognitive impairment (MCI) is a potential therapeutic window in the prevention of dementia; however, automated detection of early cognitive deterioration is an unresolved issue. The aim of our study was to compare various classification approaches to differentiate MCI patients from healthy controls, based on rs-fMRI data, using machine learning (ML) algorithms. Own dataset (from two centers) and ADNI database were used during the analysis. Three fMRI parameters were applied in five feature selection algorithms: local correlation, intrinsic connectivity, and fractional amplitude of low frequency fluctuations. Support vector machine (SVM) and random forest (RF) methods were applied for classification. We achieved a relatively wide range of 78-87% accuracy for the various feature selection methods with SVM combining the three rs-fMRI parameters. In the ADNI datasets case we can also see even 90% accuracy scores. RF provided a more harmonized result among the feature selection algorithms in both datasets with 80-84% accuracy for our local and 74-82% for the ADNI database. Despite some lower performance metrics of some algorithms, most of the results were positive and could be seen in two unrelated datasets which increase the validity of our methods. Our results highlight the potential of ML-based fMRI applications for automated diagnostic techniques to recognize MCI patients.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Magnetic Resonance Imaging/methods , Machine Learning , Cognitive Dysfunction/diagnostic imaging , Algorithms , Brain/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...