Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
J Invest Dermatol ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38431220

ABSTRACT

NIPP1 is a ubiquitously expressed regulatory subunit of PP1. Its embryonic deletion in keratinocytes causes chronic sterile skin inflammation, epidermal hyperproliferation, and resistance to mutagens in adult mice. To explore the primary effects of NIPP1 deletion, we first examined hair cycle progression of NIPP1 skin knockouts (SKOs). The entry of the first hair cycle in the SKOs was delayed owing to prolonged quiescence of hair follicle stem cells. In contrast, the entry of the second hair cycle in the SKOs was advanced as a result of precocious activation of hair follicle stem cells. The epidermis of SKOs progressively accumulated senescent cells, and this cell-fate switch was accelerated by DNA damage. Primary keratinocytes from SKO neonates and human NIPP1-depleted HaCaT keratinocytes failed to proliferate and showed an increase in the expression of cell cycle inhibitors (p21, p16/Ink4a, and/or p19/Arf) and senescence-associated-secretory-phenotype factors as well as in DNA damage (γH2AX and 53BP1). Our data demonstrate that the primary effect of NIPP1 deletion in keratinocytes is a cell cycle arrest and premature senescence that gradually progresse to chronic senescence and likely contribute to the decreased sensitivity of SKOs to mutagens.

2.
FEBS J ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303113

ABSTRACT

Protein phosphatase-1 (PP1) complexed to nuclear inhibitor of PP1 (NIPP1) limits DNA repair through dephosphorylation of NIPP1-recruited substrates. However, the PP1:NIPP1 holoenzyme is completely inactive under basal conditions, hinting at a DNA damage-regulated activation mechanism. Here, we report that DNA damage caused the activation of PP1:NIPP1 after a time delay of several hours through phosphorylation of NIPP1 at the C-terminal tyrosine 335 (Y335) by a Src-family kinase. PP1:NIPP1 activation partially resulted from the dissociation of the C terminus of NIPP1 from the active site of PP1. In addition, the released Y335-phosphorylated C terminus interacted with the N terminus of NIPP1 to enhance substrate recruitment by the flanking forkhead-associated (FHA) domain. Constitutive activation of PP1:NIPP1 by knock-in of a phospho-mimicking (Y335E) NIPP1 mutant led to the hypo-phosphorylation of FHA ligands and an accumulation of DNA double-strand breaks. Our data indicate that PP1:NIPP1 activation through circularization of NIPP1 is a late response to DNA damage that contributes to the timely recovery from damage repair.

3.
Cell Commun Signal ; 22(1): 65, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267954

ABSTRACT

Protein Phosphatase 1 (PP1) is a major serine/threonine phosphatase in eukaryotes, participating in several cellular processes and metabolic pathways. Due to their low substrate specificity, PP1's catalytic subunits do not exist as free entities but instead bind to Regulatory Interactors of Protein Phosphatase One (RIPPO), which regulate PP1's substrate specificity and subcellular localization. Most RIPPOs bind to PP1 through combinations of short linear motifs (4-12 residues), forming highly specific PP1 holoenzymes. These PP1-binding motifs may, hence, represent attractive targets for the development of specific drugs that interfere with a subset of PP1 holoenzymes. Several viruses exploit the host cell protein (de)phosphorylation machinery to ensure efficient virus particle formation and propagation. While the role of many host cell kinases in viral life cycles has been extensively studied, the targeting of phosphatases by viral proteins has been studied in less detail. Here, we compile and review what is known concerning the role of PP1 in the context of viral infections and discuss how it may constitute a putative host-based target for the development of novel antiviral strategies.


Subject(s)
Protein Processing, Post-Translational , Virus Diseases , Humans , Protein Phosphatase 1 , Phosphorylation , Transcription Factors , Holoenzymes
4.
Cell Chem Biol ; 30(12): 1666-1679.e6, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37625414

ABSTRACT

An emerging strategy for the therapeutic targeting of protein phosphatases involves the use of compounds that interfere with the binding of regulatory subunits or substrates. However, high-throughput screening strategies for such interfering molecules are scarce. Here, we report on the conversion of the NanoBiT split-luciferase system into a robust assay for the quantification of phosphatase subunit and substrate interactions in cell lysates. The assay is suitable to screen small-molecule libraries for interfering compounds. We designed and validated split-luciferase sensors for a broad range of PP1 and PP2A holoenzymes, including sensors that selectively report on weak interaction sites. To facilitate efficient hit triaging in large-scale screening campaigns, deselection procedures were developed to eliminate assay-interfering molecules with high fidelity. As a proof-of-principle, we successfully applied the split-luciferase screening tool to identify small-molecule disruptors of the interaction between the C-terminus of PP1ß and the ankyrin-repeat domain of the myosin-phosphatase targeting subunit MYPT1.


Subject(s)
Protein Phosphatase 1 , Protein Phosphatase 1/chemistry , Protein Phosphatase 1/metabolism , Protein Binding , Myosin-Light-Chain Phosphatase/metabolism , Phosphorylation
5.
FEBS J ; 289(11): 3072-3085, 2022 06.
Article in English | MEDLINE | ID: mdl-34028981

ABSTRACT

Protein phosphatase 1 (PP1) is expressed in all eukaryotic cells and catalyzes a sizable fraction of protein Ser/Thr dephosphorylation events. It is tightly regulated in space and time through association with a wide array of regulatory interactors of protein phosphatase one (RIPPOs). Suppressor-of-Dis2-number 2 (SDS22) and Inhibitor-3 (I3), which form a ternary complex with PP1, are the first two evolved and most widely expressed RIPPOs. Their deletion causes mitotic-arrest phenotypes and is lethal in some organisms. The role of SDS22 and I3 in PP1 regulation has been a mystery for decades as they were independently identified as both activators and inhibitors of PP1. This conundrum has largely been solved by recent reports showing that SDS22 and I3 control multiple steps of the life course of PP1. Indeed, they contribute to (a) the stabilization and activation of newly translated PP1, (b) the translocation of PP1 to the nucleus, and (c) the storage of PP1 as a reserve for holoenzyme assembly. Preliminary evidence suggests that SDS22 and I3 may also function as scavengers of released or aged PP1 for re-use in holoenzyme assembly or proteolytical degradation, respectively. Hence, SDS22 and I3 are emerging as master regulators of the life course of PP1.


Subject(s)
Cell Nucleus , Life Change Events , Cell Nucleus/metabolism , Holoenzymes/metabolism , Phosphorylation , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism
6.
Nat Commun ; 12(1): 6116, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34675204

ABSTRACT

Critical cancer pathways often cannot be targeted because of limited efficiency crossing cell membranes. Here we report the development of a Salmonella-based intracellular delivery system to address this challenge. We engineer genetic circuits that (1) activate the regulator flhDC to drive invasion and (2) induce lysis to release proteins into tumor cells. Released protein drugs diffuse from Salmonella containing vacuoles into the cellular cytoplasm where they interact with their therapeutic targets. Control of invasion with flhDC increases delivery over 500 times. The autonomous triggering of lysis after invasion makes the platform self-limiting and prevents drug release in healthy organs. Bacterial delivery of constitutively active caspase-3 blocks the growth of hepatocellular carcinoma and lung metastases, and increases survival in mice. This success in targeted killing of cancer cells provides critical evidence that this approach will be applicable to a wide range of protein drugs for the treatment of solid tumors.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Caspase 3/administration & dosage , Drug Delivery Systems/methods , Liver Neoplasms/prevention & control , Lung Neoplasms/drug therapy , Salmonella/genetics , Animals , Bacteriolysis , Carcinoma, Hepatocellular/physiopathology , Caspase 3/genetics , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation , Drug Delivery Systems/instrumentation , Female , Humans , Liver Neoplasms/secondary , Male , Mice , Salmonella/physiology , Salmonella typhimurium
7.
Commun Biol ; 4(1): 760, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145386

ABSTRACT

PP1 is a conserved eukaryotic serine/threonine phosphatase that regulates many aspects of mitosis and meiosis, often working in concert with other phosphatases, such as CDC14 and CDC25. The proliferative stages of the malaria parasite life cycle include sexual development within the mosquito vector, with male gamete formation characterized by an atypical rapid mitosis, consisting of three rounds of DNA synthesis, successive spindle formation with clustered kinetochores, and a meiotic stage during zygote to ookinete development following fertilization. It is unclear how PP1 is involved in these unusual processes. Using real-time live-cell and ultrastructural imaging, conditional gene knockdown, RNA-seq and proteomic approaches, we show that Plasmodium PP1 is implicated in both mitotic exit and, potentially, establishing cell polarity during zygote development in the mosquito midgut, suggesting that small molecule inhibitors of PP1 should be explored for blocking parasite transmission.


Subject(s)
Life Cycle Stages/genetics , Meiosis/genetics , Mitosis/genetics , Plasmodium/growth & development , Protein Phosphatase 1/genetics , Protozoan Proteins/genetics , Cell Proliferation/genetics , Malaria/prevention & control , Malaria/transmission , Mosquito Vectors/parasitology , Plasmodium/metabolism , Protein Phosphatase 1/metabolism , Protozoan Proteins/metabolism
8.
Chembiochem ; 22(5): 834-838, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33085143

ABSTRACT

Phosphoprotein phosphatase-1 (PP1) is a key player in the regulation of phospho-serine (pSer) and phospho-threonine (pThr) dephosphorylation and is involved in a large fraction of cellular signaling pathways. Aberrant activity of PP1 has been linked to many diseases, including cancer and heart failure. Besides a well-established activity control by regulatory proteins, an inhibitory function for phosphorylation (p) of a Thr residue in the C-terminal intrinsically disordered tail of PP1 has been demonstrated. The associated phenotype of cell-cycle arrest was repeatedly proposed to be due to autoinhibition of PP1 through either conformational changes or substrate competition. Here, we use PP1 variants created by mutations and protein semisynthesis to differentiate between these hypotheses. Our data support the hypothesis that pThr exerts its inhibitory function by mediating protein complex formation rather than by a direct mechanism of structural changes or substrate competition.


Subject(s)
Intracellular Signaling Peptides and Proteins/pharmacology , Protein Phosphatase 1/antagonists & inhibitors , Serine/chemistry , Threonine/chemistry , Humans , Phosphorylation , Protein Binding , Protein Conformation , Protein Domains , Protein Phosphatase 1/genetics
9.
Biochem Soc Trans ; 48(5): 2229-2240, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33125485

ABSTRACT

Inhibitor-2 (I2) ranks amongst the most ancient regulators of protein phosphatase-1 (PP1). It is a small, intrinsically disordered protein that was originally discovered as a potent inhibitor of PP1. However, later investigations also characterized I2 as an activator of PP1 as well as a chaperone for PP1 folding. Numerous studies disclosed the importance of I2 for diverse cellular processes but did not describe a unifying molecular principle of PP1 regulation. We have re-analyzed the literature on I2 in the light of current insights of PP1 structure and regulation. Extensive biochemical data, largely ignored in the recent I2 literature, provide substantial indirect evidence for a role of I2 as a loader of active-site metals. In addition, I2 appears to function as a competitive inhibitor of PP1 in higher eukaryotes. The published data also demonstrate that several segments of I2 that remain unstructured in the PP1 : I2 complex are in fact essential for PP1 regulation. Together, the available data identify I2 as a dynamic activity-modulator of PP1.


Subject(s)
DNA-Binding Proteins/chemistry , Histone Chaperones/chemistry , Protein Phosphatase 1/antagonists & inhibitors , Amino Acid Motifs , Animals , Catalytic Domain , Enzyme Inhibitors/chemistry , Gene Expression Regulation , Humans , Intrinsically Disordered Proteins/metabolism , Molecular Chaperones/metabolism , Molecular Conformation , Phosphorylation , Protein Conformation , Protein Folding , Protein Processing, Post-Translational , Saccharomyces cerevisiae/metabolism , Signal Transduction
10.
Cell Cycle ; 19(22): 3029-3041, 2020 11.
Article in English | MEDLINE | ID: mdl-33054506

ABSTRACT

RepoMan is a chromosome-associated scaffold protein that integrates signaling of multiple kinases and phosphatases to coordinate spindle-kinetochore interactions, chromosome (de)condensation and nuclear envelope (dis)assembly during mitosis. Another key mitotic event is the assembly of a microtubule-based spindle, which involves redundant pathways emanating from the centrosomes, microtubules and chromosomes. Here we describe a novel mitotic function of RepoMan in regulating chromosome-dependent microtubule assembly. At limiting concentrations of microtubule-destabilizing agents, RepoMan-depleted cells showed enhanced chromosome clustering. This clustering was completely dependent on the partial inhibition of microtubule growth originating from the chromosome-dependent pathway. We also demonstrated that RepoMan interacts with prime regulators of the chromosome-dependent spindle assembly such as NuSAP1, NuMA, and TPX2. In addition, RepoMan was required to enable or maintain phosphorylation of NuSAP1 at CDK sites, thereby enabling activation of NuSAP1 through dissociation of inhibitory importin ß/7. Our data identify RepoMan as an enhancer of microtubule assembly at chromosomes.


Subject(s)
Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromosomes, Human/metabolism , M Phase Cell Cycle Checkpoints/genetics , Microtubules/metabolism , Nuclear Proteins/metabolism , Signal Transduction/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Centrosome/metabolism , HEK293 Cells , HeLa Cells , Humans , Microtubule-Associated Proteins/metabolism , Nuclear Proteins/genetics , Phosphorylation , Protein Phosphatase 1/metabolism , Transfection
11.
Am J Hum Genet ; 107(4): 753-762, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32910914

ABSTRACT

Lamin B1 plays an important role in the nuclear envelope stability, the regulation of gene expression, and neural development. Duplication of LMNB1, or missense mutations increasing LMNB1 expression, are associated with autosomal-dominant leukodystrophy. On the basis of its role in neurogenesis, it has been postulated that LMNB1 variants could cause microcephaly. Here, we confirm this hypothesis with the identification of de novo mutations in LMNB1 in seven individuals with pronounced primary microcephaly (ranging from -3.6 to -12 SD) associated with relative short stature and variable degree of intellectual disability and neurological features as the core symptoms. Simplified gyral pattern of the cortex and abnormal corpus callosum were noted on MRI of three individuals, and these individuals also presented with a more severe phenotype. Functional analysis of the three missense mutations showed impaired formation of the LMNB1 nuclear lamina. The two variants located within the head group of LMNB1 result in a decrease in the nuclear localization of the protein and an increase in misshapen nuclei. We further demonstrate that another mutation, located in the coil region, leads to increased frequency of condensed nuclei and lower steady-state levels of lamin B1 in proband lymphoblasts. Our findings collectively indicate that de novo mutations in LMNB1 result in a dominant and damaging effect on nuclear envelope formation that correlates with microcephaly in humans. This adds LMNB1 to the growing list of genes implicated in severe autosomal-dominant microcephaly and broadens the phenotypic spectrum of the laminopathies.


Subject(s)
Dwarfism/genetics , Intellectual Disability/genetics , Lamin Type B/genetics , Microcephaly/genetics , Mutation , Nuclear Lamina/genetics , Amino Acid Sequence , Base Sequence , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Child, Preschool , Corpus Callosum/diagnostic imaging , Corpus Callosum/metabolism , Corpus Callosum/pathology , Dwarfism/diagnostic imaging , Dwarfism/metabolism , Dwarfism/pathology , Female , Gene Expression , Humans , Infant , Intellectual Disability/diagnostic imaging , Intellectual Disability/metabolism , Intellectual Disability/pathology , Lamin Type B/metabolism , Lymphocytes/metabolism , Lymphocytes/pathology , Magnetic Resonance Imaging , Male , Microcephaly/diagnostic imaging , Microcephaly/metabolism , Microcephaly/pathology , Nuclear Lamina/metabolism , Nuclear Lamina/pathology
12.
Oncogenesis ; 9(3): 30, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32123159

ABSTRACT

Nuclear Inhibitor of PP1 (NIPP1) is a conserved regulatory subunit of protein phosphatase PP1. The selective deletion of NIPP1 in mouse liver parenchymal cells or skin epidermal cells culminates in a late-onset hyperproliferation of a subset of resident progenitor cells. Although a hyperplastic phenotype is usually tumor promoting, we show here that the absence of NIPP1 conferred a strong resistance to chemically induced hepatocellular or skin carcinoma. The ablation of NIPP1 did not affect the metabolism of the administered mutagens (diethylnitrosamine or 7,12-dimethylbenz[a]anthracene), but reduced the conversion of mutagen-induced covalent DNA modifications into cancer-initiating mutations. This reduced sensitivity to mutagens correlated with an enhanced DNA-damage response and an augmented expression of rate-limiting DNA-repair proteins (MGMT in liver, XPD and XPG in skin), hinting at an increased DNA-repair capacity. Our data identify NIPP1 as a repressor of DNA repair and as a promising target for novel cancer prevention and treatment therapies.

13.
Mol Biol Cell ; 31(6): 419-438, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31967936

ABSTRACT

Chromosome segregation during mitosis is antagonistically regulated by the Aurora-B kinase and RepoMan (recruits PP1 onto mitotic chromatin at anaphase)-associated phosphatases PP1/PP2A. Aurora B is overexpressed in many cancers but, surprisingly, this only rarely causes lethal aneuploidy. Here we show that RepoMan abundance is regulated by the same mechanisms that control Aurora B, including FOXM1-regulated expression and proteasomal degradation following ubiquitination by APC/C-CDH1 or SCFFBXW7. The deregulation of these mechanisms can account for the balanced co-overexpression of Aurora B and RepoMan in many cancers, which limits chromosome segregation errors. In addition, Aurora B and RepoMan independently promote cancer cell proliferation by reducing checkpoint--induced cell-cycle arrest during interphase. The co-up-regulation of RepoMan and Aurora B in tumors is inversely correlated with patient survival, underscoring its potential importance for tumor progression. Finally, we demonstrate that high RepoMan levels sensitize cancer cells to Aurora-B inhibitors. Hence, the co-up-regulation of RepoMan and Aurora B is associated with tumor aggressiveness but also exposes a vulnerable target for therapeutic intervention.


Subject(s)
Aurora Kinase B/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Gene Expression Regulation , Nuclear Proteins/metabolism , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Forkhead Box Protein M1/metabolism , HEK293 Cells , Humans , Interphase , Mitosis , Models, Biological , Neoplasms/metabolism , Neoplasms/pathology , Proteasome Endopeptidase Complex/metabolism , Protein Kinase Inhibitors/pharmacology , Proteolysis , Treatment Outcome
14.
J Invest Dermatol ; 140(8): 1576-1588, 2020 08.
Article in English | MEDLINE | ID: mdl-31972250

ABSTRACT

Nuclear inhibitor of protein phosphatase 1 (NIPP1) is a ubiquitously expressed nuclear protein that regulates functions of protein serine/threonine phosphatase-1 in cell proliferation and lineage specification. The role of NIPP1 in tissue homeostasis is not fully understood. This study shows that the selective deletion of NIPP1 in mouse epidermis resulted in epidermal hyperproliferation, a reduced adherence of basal keratinocytes, and a gradual decrease in the stemness of hair follicle stem cells, culminating in hair loss. This complex phenotype was associated with chronic sterile skin inflammation and could be partially rescued by dexamethasone treatment. NIPP1-deficient keratinocytes massively expressed proinflammatory chemokines and immunomodulatory proteins in a cell-autonomous manner. Chemokines subsequently induced the recruitment and activation of immune cells, in particular conventional dendritic cells and Langerhans cells, accounting for the chronic inflammation phenotype. The data identifies NIPP1 as a key regulator of epidermal homeostasis and as a potential target for the treatment of inflammatory skin diseases.


Subject(s)
Alopecia/immunology , Chemokines/metabolism , Dermatitis/immunology , Epidermis/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Alopecia/genetics , Alopecia/pathology , Animals , Cell Adhesion/immunology , Cell Proliferation/genetics , Chemokines/immunology , Dermatitis/genetics , Dermatitis/pathology , Disease Models, Animal , Epidermis/immunology , Hair Follicle/immunology , Hair Follicle/pathology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Keratinocytes/immunology , Keratinocytes/pathology , Mice , Mice, Knockout
15.
J Biol Chem ; 294(36): 13478-13486, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31337709

ABSTRACT

The aminoguanidine compound robenidine is widely used as an antibiotic for the control of coccidiosis, a protozoal infection in poultry and rabbits. Interestingly, robenidine is structurally similar to guanabenz (analogs), which are currently undergoing clinical trials as cytoprotective agents for the management of neurodegenerative diseases. Here we show that robenidine and guanabenz protect cells from a tunicamycin-induced unfolded protein response to a similar degree. Both compounds also reduced the tumor necrosis factor α-induced activation of NF-κB. The cytoprotective effects of guanabenz (analogs) have been explained previously by their ability to maintain eIF2α phosphorylation by allosterically inhibiting protein phosphatase PP1:PPP1R15A. However, using a novel split-luciferase-based protein-protein interaction assay, we demonstrate here that neither robenidine nor guanabenz disrupt the interaction between PPP1R15A and either PP1 or eIF2α in intact cells. Moreover, both drugs also inhibited the unfolded protein response in cells that expressed a nonphosphorylatable mutant (S51A) of eIF2α. Our results identify robenidine as a PP1:PPP1R15A-independent cytoprotective compound that holds potential for the management of protein misfolding-associated diseases.


Subject(s)
Anti-Bacterial Agents/pharmacology , Protective Agents/pharmacology , Protein Phosphatase 1/metabolism , Receptors, Neuropeptide Y/metabolism , Robenidine/pharmacology , Animals , CHO Cells , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cricetulus , Dose-Response Relationship, Drug , HEK293 Cells , HeLa Cells , Humans , Structure-Activity Relationship
16.
Bioessays ; 41(3): e1800217, 2019 03.
Article in English | MEDLINE | ID: mdl-30730051

ABSTRACT

Timers and sensors are common devices that make our daily life safer, more convenient, and more efficient. In a cellular context, they arguably play an even more crucial role as they ensure the survival of cells in the presence of various extrinsic and intrinsic stresses. Biological timers and sensors generate distinct signaling profiles, enabling them to produce different types of cellular responses. Recent data suggest that they can work together to guarantee correct timing and responsiveness. By exploring examples of cellular stress signaling from mitosis, DNA damage, and hypoxia, the authors discuss the common architecture of timer-sensor integration, and how its added features contribute to the generation of desired signaling profiles when dealing with stresses of variable duration and strength. The authors propose timer-sensor integration as a widespread mechanism with profound biological implications and therapeutic potential.


Subject(s)
Biological Clocks/physiology , Cell Cycle Checkpoints/physiology , Cells/metabolism , Mitosis/physiology , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Hypoxia/physiology , DNA Damage/drug effects , DNA Damage/physiology , Kinetochores/metabolism , Microtubules/metabolism , Mitosis/drug effects , Neoplasms/drug therapy , Signal Transduction/drug effects
17.
Structure ; 27(3): 507-518.e5, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30661852

ABSTRACT

SDS22 is an ancient regulator of protein phosphatase-1 (PP1). Our crystal structure of SDS22 shows that its twelve leucine-rich repeats adopt a banana-shaped fold that is shielded from solvent by capping domains at its extremities. Subsequent modeling and biochemical studies revealed that the concave side of SDS22 likely interacts with PP1 helices α5 and α6, which are distal from the binding sites of many previously described PP1 interactors. Accordingly, we found that SDS22 acts as a "third" subunit of multiple PP1 holoenzymes. The crystal structure of SDS22 also revealed a large basic surface patch that enables binding of a phosphorylated form of splicing factor BCLAF1. Taken together, our data provide insights into the formation of PP1:SDS22 and the recruitment of additional interaction proteins, such as BCLAF1.


Subject(s)
Protein Phosphatase 1/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Binding Sites , Humans , Models, Molecular , Phosphorylation , Protein Binding , Protein Phosphatase 1/chemistry , Protein Structure, Secondary
18.
Biochim Biophys Acta Mol Cell Res ; 1866(1): 16-30, 2019 01.
Article in English | MEDLINE | ID: mdl-30056088

ABSTRACT

Protein phosphatase 1 (PP1) catalyzes more than half of all phosphoserine/threonine dephosphorylation reactions in mammalian cells. In vivo PP1 does not exist as a free catalytic subunit but is always associated with at least one regulatory PP1-interacting protein (PIP) to generate a large set of distinct holoenzymes. Each PP1 complex controls the dephosphorylation of only a small subset of PP1 substrates. We screened the literature for genetically engineered mouse models and identified models for all PP1 isoforms and 104 PIPs. PP1 itself and at least 49 PIPs were connected to human disease-associated phenotypes. Additionally, phenotypes related to 17 PIPs were clearly linked to altered PP1 function, while such information was lacking for 32 other PIPs. We propose structural reverse genetics, which combines structural characterization of proteins with mouse genetics, to identify new PP1-related therapeutic targets. The available mouse models confirm the pleiotropic action of PP1 in health and diseases.


Subject(s)
Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Protein Phosphatase 1/physiology , Alternative Splicing , Animals , Disease , Genotype , Holoenzymes/metabolism , Holoenzymes/physiology , Humans , Mice , Models, Animal , Phenotype , Phosphorylation , Protein Isoforms , Reverse Genetics/methods , Substrate Specificity/physiology
20.
Mol Cell ; 72(4): 766-777.e6, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30344098

ABSTRACT

The functional diversity of protein phosphatase-1 (PP1), with its countless substrates, relies on the ordered assembly of alternative PP1 holoenzymes. Here, we show that newly synthesized PP1 is first held by its partners SDS22 and inhibitor-3 (I3) in an inactive complex, which needs to be disassembled by the p97 AAA-ATPase to promote exchange to substrate specifiers. Unlike p97-mediated degradative processes that require the Ufd1-Npl4 ubiquitin adapters, p97 is targeted to PP1 by p37 and related adapter proteins. Reconstitution with purified components revealed direct interaction of the p37 SEP domain with I3 without the need for ubiquitination, and ATP-driven pulling of I3 into the central channel of the p97 hexamer, which triggers dissociation of I3 and SDS22. Thus, we establish regulatory ubiquitin-independent protein complex disassembly as part of the functional arsenal of p97 and define an unanticipated essential step in PP1 biogenesis that illustrates the molecular challenges of ordered subunit exchange.


Subject(s)
Adenosine Triphosphatases/metabolism , Nuclear Proteins/metabolism , Protein Phosphatase 1/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , HEK293 Cells , HeLa Cells , Holoenzymes/metabolism , Humans , Models, Molecular , Nuclear Pore Complex Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Protein Binding , Protein Phosphatase 1/antagonists & inhibitors , Proton-Translocating ATPases/metabolism , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...