Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 35(9)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36575863

ABSTRACT

Alumina (Al2O3) is an important ceramic material notable for its compressive strength and hardness. It represents one of the major oxide components of the Earth's mantle. Static compression experiments have reported evidence for phase transformations from the trigonalα-corundum phase to the orthorhombic Rh2O3(II)-type structure at ∼90 GPa, and then to the post-perovskite structure at ∼130 GPa, but these phases have yet to be directly observed under shock compression. In this work, we describe laser-driven shock compression experiments on polycrystalline alumina conducted at the Matter in Extreme Conditions endstation of the Linac Coherent Light Source. Ultrafast x-ray pulses (50 fs, 1012photons/pulse) were used to probe the atomic-level response at different times during shock propagation and subsequent pressure release. At 107 ± 8 GPa on the Hugoniot, we observe diffraction peaks that match the orthorhombic Rh2O3(II) phase with a density of 5.16 ± 0.03 g cm-3. Upon unloading, the material transforms back to theα-corundum structure. Upon release to ambient pressure, densities are lower than predicted assuming isentropic release, indicating additional lattice expansion due to plastic work heating. Using temperature values calculated from density measurements, we provide an estimate of alumina's strength on release from shock compression.

2.
J Phys Chem A ; 118(14): 2559-67, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24628136

ABSTRACT

Initiation of the shock driven chemical reactions and detonation of nitromethane (NM) can be sensitized by the addition of a weak base; however, the chemical mechanism by which sensitization occurs remains unclear. We investigated the shock driven chemical reaction in NM and in NM sensitized with diethylenetriamine (DETA), using a sustained 300 ps shock driven by a chirped Ti:sapphire laser. We measured the solutions' visible transient absorption spectra and measured interface particle and shock velocities of the nitromethane solutions using ultrafast dynamic ellipsometry. We found there to be a volume-increasing reaction that takes place around interface particle velocity up = 2.4 km/s and up = 2.2 km/s for neat NM and NM with 5% DETA, respectively. The rate at which transient absorption increases is similar in all mixtures, but with decreasing induction times for solutions with increasing DETA concentrations. This result supports the hypothesis that the chemical reaction mechanisms for shocked NM and NM with DETA are the same. Data from shocked NM are compared to literature experimental and theoretical data.

3.
J Phys Chem A ; 117(29): 6158-63, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23656314

ABSTRACT

Laser shock Hugoniot data were obtained using ultrafast dynamic ellipsometry (UDE) for both nonideal (ethanol/water solutions with mole percent χ(ethanol) = 0%, 3.4%, 5.4%, 7.5%, 9.7%, 11%, 18%, 33%, 56%, 100%) and ideal liquid mixtures (toluene/fluorobenzene solutions with mole percent χ(toluene) = 0%, 26.0%, 49.1%, 74.9%, 100%). The shock and particle velocities obtained from the UDE data were compared to the universal liquid Hugoniot (ULH) and to literature shock (plate impact) data where available. It was found that the water UDE data fit to a ULH-form equation suggests an intercept of 1.32 km/s, lower than the literature ambient sound speed in water of 1.495 km/s (Mijakovic et al. J. Mol. Liq. 2011, 164, 66-73). Similarly, the ethanol UDE data fit to a ULH-form equation suggests an intercept of 1.45 km/s, which lies above the literature ambient sound speed in ethanol of 1.14 km/s. Both the literature plate impact and UDE Hugoniot data lie below the ULH for water. Likewise, the literature plate impact and UDE Hugoniot data lie above the ULH for ethanol. The UDE Hugoniot data for the mixtures of water and ethanol cross the predictions of the ULH near the same concentration where the sound speed reaches a maximum. In contrast, the UDE data from the ideal liquids and their mixtures are well behaved and agree with ULH predictions across the concentration range. The deviations of the nonideal ethanol/water data from the ULH suggest that complex hydrogen bonding networks in ethanol/water mixtures alter the compressibility of the mixture.

SELECTION OF CITATIONS
SEARCH DETAIL
...