Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Endocrinology ; 164(7)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37279575

ABSTRACT

Stressful life experiences are associated with the development of neuropsychiatric disorders like depression. Emerging evidence indicates that microglia, the specialized resident macrophages of the brain, may be a key mediator of the relationship between psychosocial stressor exposure and adaptive or maladaptive responses at the level of synaptic, circuit, and neuroimmune alterations. Here, we review current literature regarding how psychosocial stressor exposure changes microglial structure and function, thereby altering behavioral and brain outcomes, with a particular focus on age- and sex-dependent effects. We argue that additional emphasis should be placed in future research on investigating sex differences and the impacts of stressor exposure during sensitive periods of development, as well as going beyond traditional morphological measurements to interrogate microglial function. The bidirectional relationship between microglia and the stress response, particularly the role of microglia in the neuroendocrine control of stress-related circuits, is also an important area for future investigation. Finally, we discuss emerging themes and future directions that point to the possibility of the development of novel therapeutics for stress-related neuropsychiatric disorders.


Subject(s)
Microglia , Neuroimmunomodulation , Humans , Male , Female , Stress, Psychological/complications , Brain , Macrophages
2.
Biol Psychiatry Glob Open Sci ; 3(1): 99-109, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36712559

ABSTRACT

Background: Mental health and vulnerabilities to neuropsychiatric disorders involve the interplay of genes and environment, particularly during sensitive developmental periods. Early-life adversity (ELA) and stress promote vulnerabilities to stress-related affective disorders, yet it is unknown how transient ELA dictates lifelong neuroendocrine and behavioral reactions to stress. The population of hypothalamic corticotropin-releasing factor (CRF)-expressing neurons that regulate stress responses is a promising candidate to mediate the long-lasting influences of ELA on stress-related behavioral and hormonal responses via enduring transcriptional and epigenetic mechanisms. Methods: Capitalizing on a well-characterized model of ELA, we examined ELA-induced changes in gene expression profiles of CRF-expressing neurons in the hypothalamic paraventricular nucleus of developing male mice. We used single-cell RNA sequencing on isolated CRF-expressing neurons. We determined the enduring functional consequences of transcriptional changes on stress reactivity in adult ELA mice, including hormonal responses to acute stress, adrenal weights as a measure of chronic stress, and behaviors in the looming shadow threat task. Results: Single-cell transcriptomics identified distinct and novel CRF-expressing neuronal populations, characterized by both their gene expression repertoire and their neurotransmitter profiles. ELA-provoked expression changes were selective to specific subpopulations and affected genes involved in neuronal differentiation, synapse formation, energy metabolism, and cellular responses to stress and injury. Importantly, these expression changes were impactful, apparent from adrenal hypertrophy and augmented behavioral responses to stress in adulthood. Conclusions: We uncover a novel repertoire of stress-regulating CRF cell types differentially affected by ELA and resulting in augmented stress vulnerability, with relevance to the origins of stress-related affective disorders.

3.
Brain Behav Immun ; 107: 399-400, 2023 01.
Article in English | MEDLINE | ID: mdl-36400334

Subject(s)
Brain , Microglia , Rats , Animals
4.
Alcohol Clin Exp Res (Hoboken) ; 47(2): 336-347, 2023 02.
Article in English | MEDLINE | ID: mdl-36462937

ABSTRACT

BACKGROUND: Stressful early-life experiences increase the risk of developing an alcohol use disorder. We previously found that male C57BL/6J mice reared under limited bedding and nesting (LBN) conditions, a model of early-life adversity, escalate their ethanol intake in limited-access two-bottle choice (2BC) sessions faster than control (CTL)-reared counterparts when exposed to chronic intermittent ethanol (CIE) vapor inhalation. However, the alcohol consumption of female littermates was not affected by LBN or CIE. In the present study, we sought to determine whether this phenotype reflected a general insensitivity of female mice to the influence of early-life stress on alcohol responses. METHODS: In a first experiment, CTL and LBN females with a history of 2BC combined or not with CIE were tested in affective and nociceptive assays during withdrawal. In a second group of CTL and LBN females, we examined ethanol-induced antinociception, sedation, plasma clearance, and c-Fos induction. RESULTS: In females withdrawn from chronic 2BC, CIE increased digging, reduced grooming, and increased immobility in the tail suspension test regardless of early-life history. In contrast, LBN rearing lowered mechanical nociceptive thresholds regardless of CIE exposure. In females acutely treated with ethanol, LBN rearing facilitated antinociception and delayed the onset of sedation without influencing ethanol clearance rate or c-Fos induction in the paraventricular nucleus of the hypothalamus, paraventricular nucleus of the thalamus, central nucleus of the amygdala, or auditory cortex. CONCLUSION: CIE withdrawal produced multiple indices of negative affect in C57BL/6J females, suggesting that their motivation to consume alcohol may differ from air-exposed counterparts despite equivalent intake. Contrasted with our previous findings in males, LBN-induced mechanical hyperalgesia in chronic alcohol drinkers was specific to females. Lower nociceptive thresholds combined with increased sensitivity to the acute antinociceptive effect of ethanol may contribute to reinforcing ethanol consumption in LBN females but are not sufficient to increase their intake.


Subject(s)
Alcoholism , Stress, Psychological , Animals , Female , Mice , Alcohol Drinking/psychology , Alcoholism/psychology , Ethanol , Mice, Inbred C57BL , Proto-Oncogene Proteins c-fos
5.
Nat Metab ; 4(12): 1732-1745, 2022 12.
Article in English | MEDLINE | ID: mdl-36443520

ABSTRACT

High maternal weight is associated with detrimental outcomes in offspring, including increased susceptibility to neurological disorders such as anxiety, depression and communicative disorders. Despite widespread acknowledgement of sex biases in the development of these disorders, few studies have investigated potential sex-biased mechanisms underlying disorder susceptibility. Here, we show that a maternal high-fat diet causes endotoxin accumulation in fetal tissue, and subsequent perinatal inflammation contributes to sex-specific behavioural outcomes in offspring. In male offspring exposed to a maternal high-fat diet, increased macrophage Toll-like receptor 4 signalling results in excess microglial phagocytosis of serotonin (5-HT) neurons in the developing dorsal raphe nucleus, decreasing 5-HT bioavailability in the fetal and adult brains. Bulk sequencing from a large cohort of matched first-trimester human samples reveals sex-specific transcriptome-wide changes in placental and brain tissue in response to maternal triglyceride accumulation (a proxy for dietary fat content). Further, fetal brain 5-HT levels decrease as placental triglycerides increase in male mice and male human samples. These findings uncover a microglia-dependent mechanism through which maternal diet can impact offspring susceptibility for neuropsychiatric disorder development in a sex-specific manner.


Subject(s)
Placenta , Serotonin , Pregnancy , Male , Female , Mice , Animals , Humans , Brain , Diet, High-Fat/adverse effects , Dietary Fats
6.
Front Behav Neurosci ; 16: 1013865, 2022.
Article in English | MEDLINE | ID: mdl-36268470

ABSTRACT

Early-life adversity (ELA) is known to alter brain circuit maturation as well as increase vulnerability to cognitive and emotional disorders. However, the importance of examining sex as a biological variable when researching the effects of ELA has not been considered until recently. This perspective discusses the sex-specific behavioral outcomes of ELA in both humans and animal models, then proposes microglia-mediated mechanisms as a potential underlying cause. Recent work in rodent models suggests that ELA provokes cognitive deficits, anhedonia, and alcohol abuse primarily in males, whereas females exhibit greater risk-taking and opioid addiction-related behaviors. In addition, emerging evidence identifies microglia as a key target of ELA. For example, we have recently shown that ELA inhibits microglial synapse engulfment and process dynamics in male mice, leading to an increase in excitatory synapse number onto corticotrophin-releasing hormone (CRH)-expressing neurons in the paraventricular nucleus of the hypothalamus (PVN) and aberrant stress responses later in life. However, ELA-induced synaptic rewiring of neural circuits differs in females during development, resulting in divergent behavioral outcomes. Thus, examining the role of microglia in the sex-specific mechanisms underlying ELA-induced neuropsychiatric disorders is an important topic for future research.

7.
Transl Psychiatry ; 12(1): 251, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35705547

ABSTRACT

In humans, early-life adversity (ELA) such as trauma, poverty, and chaotic environment is linked to increased risk of later-life emotional disorders including depression and substance abuse. These disorders involve underlying disruption of reward circuits and likely vary by sex. Accordingly, we previously found that ELA leads to anhedonia for natural rewards and cocaine in male rodents, whereas in females ELA instead increases vulnerability to addiction-like use of opioid drugs and palatable food. While these findings suggest that ELA-induced disruption of reward circuitry may differ between the sexes, the specific circuit nodes that are influenced by ELA in either sex remain poorly understood. Here, in adult male Sprague-Dawley rats, we ask how ELA impacts opioid addiction-relevant behaviors that we previously tested after ELA in females. We probe potential circuit mechanisms in males by assessing opioid-associated neuronal activation in stress and reward circuit nodes including nucleus accumbens (NAc), amygdala, medial prefrontal cortex (mPFC), and paraventricular thalamus. We find that ELA diminishes opioid-seeking behaviors in males, and alters heroin-induced activation of NAc, PFC, and amygdala, suggesting a potential circuit-based mechanism. These studies demonstrate that ELA leads to behavioral and neurobiological disruptions consistent with anhedonia in male rodents, unlike the increased opioid seeking we previously saw in females. Our findings, taken together with our prior work, suggest that men and women could face qualitatively different mental health consequences of ELA, which may be essential for individually tailoring future intervention strategies.


Subject(s)
Adverse Childhood Experiences , Anhedonia , Analgesics, Opioid , Animals , Female , Humans , Male , Rats , Rats, Sprague-Dawley , Reward
8.
Front Cell Neurosci ; 16: 867217, 2022.
Article in English | MEDLINE | ID: mdl-35496905

ABSTRACT

Microglia are now well-known as integral regulators of brain development, phagocytosing whole neurons, and pruning weak or excess synapses in order to sculpt and refine immature circuits. However, the importance of neuronal subtype in guiding microglial activity has not received much attention until recently. This perspective will delineate what is known about this topic so far, starting with the developing brain as a whole and then focusing on the developing hypothalamus in particular. There is emerging evidence that subpopulations of microglia treat excitatory and inhibitory neurons differently, and our recent work has shown that even the type of neuropeptide produced by the nearby neurons is important. For example, microglia abutting corticotropin-releasing hormone (CRH)-expressing neurons in the paraventricular nucleus of the hypothalamus (PVN) engulf fewer excitatory synapses than do microglia on the borders of the PVN that are not contacting CRH+ neurons. Potential future directions and technical considerations will be discussed in an effort to catalyze this emerging and exciting area of research. Applications of this research may hold promise in creating more specific therapies that target unique subtypes of microglia-neuron interactions in the atypically developing brain.

9.
Cell Rep ; 38(13): 110600, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354026

ABSTRACT

Several mental illnesses, characterized by aberrant stress reactivity, often arise after early-life adversity (ELA). However, it is unclear how ELA affects stress-related brain circuit maturation, provoking these enduring vulnerabilities. We find that ELA increases functional excitatory synapses onto stress-sensitive hypothalamic corticotropin-releasing hormone (CRH)-expressing neurons, resulting from disrupted developmental synapse pruning by adjacent microglia. Microglial process dynamics and synaptic element engulfment were attenuated in ELA mice, associated with deficient signaling of the microglial phagocytic receptor MerTK. Accordingly, selective chronic chemogenetic activation of ELA microglia increased microglial process dynamics and reduced excitatory synapse density to control levels. Notably, selective early-life activation of ELA microglia normalized adult acute and chronic stress responses, including stress-induced hormone secretion and behavioral threat responses, as well as chronic adrenal hypertrophy of ELA mice. Thus, microglial actions during development are powerful contributors to mechanisms by which ELA sculpts the connectivity of stress-regulating neurons, promoting vulnerability to stress and stress-related mental illnesses.


Subject(s)
Corticotropin-Releasing Hormone , Neural Stem Cells , Animals , Mice , Microglia/physiology , Neurons/physiology , Synapses/physiology
10.
Mol Psychiatry ; 26(8): 4409-4416, 2021 08.
Article in English | MEDLINE | ID: mdl-31822817

ABSTRACT

The origins and neural bases of the current opioid addiction epidemic are unclear. Genetics plays a major role in addiction vulnerability, but cannot account for the recent exponential rise in opioid abuse, so environmental factors must contribute. Individuals with history of early life adversity (ELA) are disproportionately prone to opioid addiction, yet whether ELA interacts with factors such as increased access to opioids to directly influence brain development and function, and cause opioid addiction vulnerability, is unknown. We simulated ELA in female rats and this led to a striking opioid addiction-like phenotype. This was characterized by resistance to extinction, increased relapse-like behavior, and, as in addicted humans, major increases in opioid economic demand. By contrast, seeking of a less salient natural reward was unaffected by ELA, whereas demand for highly palatable treats was augmented. These discoveries provide novel insights into the origins and nature of reward circuit malfunction that may set the stage for addiction.


Subject(s)
Behavior, Addictive , Opioid-Related Disorders , Analgesics, Opioid , Animals , Female , Origin of Life , Rats , Reward
11.
J Neurosci ; 41(4): 648-662, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33262247

ABSTRACT

Stress may promote emotional and cognitive disturbances, which differ by sex. Adverse outcomes, including memory disturbances, are typically observed following chronic stress, but are now being recognized also after short events, including mass shootings, assault, or natural disasters, events that consist of concurrent multiple acute stresses (MAS). Prior work has established profound and enduring effects of MAS on memory in males. Here we examined the effects of MAS on female mice and probed the role of hormonal fluctuations during the estrous cycle on MAS-induced memory problems and the underlying brain network and cellular mechanisms. Female mice were impacted by MAS in an estrous cycle-dependent manner: MAS impaired hippocampus-dependent spatial memory in early-proestrous mice, characterized by high levels of estradiol, whereas memory of mice stressed during estrus (low estradiol) was spared. As spatial memory requires an intact dorsal hippocampal CA1, we examined synaptic integrity in mice stressed at different cycle phases and found a congruence of dendritic spine density and spatial memory deficits, with reduced spine density only in mice stressed during high estradiol cycle phases. Assessing MAS-induced activation of brain networks interconnected with hippocampus, we identified differential estrous cycle-dependent activation of memory- and stress-related regions, including the amygdala. Network analyses of the cross-correlation of fos expression among these regions uncovered functional connectivity that differentiated impaired mice from those not impaired by MAS. In conclusion, the estrous cycle modulates the impact of MAS on spatial memory, and fluctuating physiological levels of sex hormones may contribute to this effect.SIGNIFICANCE STATEMENT: Effects of stress on brain functions, including memory, are profound and sex-dependent. Acute stressors occurring simultaneously result in spatial memory impairments in males, but effects on females are unknown. Here we identified estrous cycle-dependent effects of such stresses on memory in females. Surprisingly, females with higher physiological estradiol experienced stress-induced memory impairment and a loss of underlying synapses. Memory- and stress-responsive brain regions interconnected with hippocampus were differentially activated across high and low estradiol mice, and predicted memory impairment. Thus, at functional, network, and cellular levels, physiological estradiol influences the effects of stress on memory in females, providing insight into mechanisms of prominent sex differences in stress-related memory disorders, such as post-traumatic stress disorder.


Subject(s)
Estrogens , Memory Disorders/physiopathology , Memory Disorders/psychology , Stress, Psychological/physiopathology , Stress, Psychological/psychology , Animals , Brain/physiopathology , CA1 Region, Hippocampal/physiopathology , Dendritic Spines , Estrous Cycle , Estrus , Female , Male , Maze Learning , Mice , Mice, Inbred C57BL , Nerve Net/physiopathology , Proto-Oncogene Proteins c-fos/genetics , Spatial Memory , Uterus/innervation , Uterus/physiopathology
12.
Neurobiol Stress ; 13: 100269, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33344722

ABSTRACT

Childhood adversity increases vulnerability to alcohol use disorders and preclinical models are needed to investigate the underlying neurobiological mechanisms. The present study modeled early-life adversity by rearing male and female C57BL/6J mouse pups in a limited bedding and nesting (LBN) environment, which induces erratic maternal care. As adults, mice were given limited access to two-bottle choice (2BC) alcohol drinking, combined or not with chronic intermittent ethanol (CIE) vapor inhalation to induce alcohol dependence. We tested the hypothesis that LBN rearing might exacerbate or facilitate the emergence of the motivational and affective effects of CIE. Consistent with our hypothesis, although LBN-reared males consumed the same baseline levels of alcohol as controls, they escalated their ethanol intake at an earlier stage of CIE exposure, i.e., after 4 rounds vs. 5 rounds for controls. In contrast, females were insensitive to both LBN rearing and CIE exposure. Males were further subjected to a behavioral test battery. Withdrawal from CIE-2BC increased digging activity and lowered mechanical nociceptive thresholds regardless of early-life conditions. On the other hand, LBN-reared CIE-2BC males showed reduced open arm exploration in the elevated plus maze and increased immobility in the tail suspension test compared to alcohol-naïve counterparts, while no group differences were detected among control-reared males. Finally, LBN rearing and alcohol exposure did not affect grooming in response to a sucrose spray (splash test), novel object recognition, or corticosterone levels. In summary, the LBN experience accelerates the transition from moderate to excessive alcohol drinking and produces additional indices of affective dysfunction during alcohol withdrawal in C57BL/6J male mice.

13.
Cell Rep ; 33(11): 108511, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33326786

ABSTRACT

Early-life adversity (ELA) is associated with lifelong memory deficits, yet the responsible mechanisms remain unclear. We impose ELA by rearing rat pups in simulated poverty, assess hippocampal memory, and probe changes in gene expression, their transcriptional regulation, and the consequent changes in hippocampal neuronal structure. ELA rats have poor hippocampal memory and stunted hippocampal pyramidal neurons associated with ~140 differentially expressed genes. Upstream regulators of the altered genes include glucocorticoid receptor and, unexpectedly, the transcription factor neuron-restrictive silencer factor (NRSF/REST). NRSF contributes critically to the memory deficits because blocking its function transiently following ELA rescues spatial memory and restores the dendritic arborization of hippocampal pyramidal neurons in ELA rats. Blocking NRSF function in vitro augments dendritic complexity of developing hippocampal neurons, suggesting that NRSF represses genes involved in neuronal maturation. These findings establish important, surprising contributions of NRSF to ELA-induced transcriptional programming that disrupts hippocampal maturation and memory function.


Subject(s)
Hippocampus/immunology , Memory Disorders/immunology , Neurons/metabolism , Transcription Factors/immunology , Animals , Disease Models, Animal , Humans , Rats
14.
Physiol Behav ; 224: 113037, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32603746

ABSTRACT

We used a modification of the limited bedding and nesting (LBN) model to evaluate the effects of early-life stress (ELS) on female and male reproductive physiology and behavior in Long-Evans rats. On postnatal day (PD) 2, dams and pups were transferred to a cage containing 100 mL of bedding (LBN condition) or to a cage containing 500 mL of bedding (control condition); bedding conditions remained until PD 10. In female rats, we measured vaginal opening, estrous cyclicity, female sexual behavior and motivation, and anxiety-like behavior. In male rats, we measured preputial separation, the development of male copulatory behavior, sexual motivation, and anxiety-like behavior. We found that relative to controls, female rats reared with LBN experienced precocious puberty and enhanced sexual motivation, but normal estrous cyclicity. Relative to controls, male rats reared with LBN experienced delayed puberty and enhanced sexual motivation, but normal development of copulatory behavior. Anxiety-like behavior was not affected by LBN in either female or male rats. In summary, the ELS of being reared with LBN affected the onset of puberty in the opposite direction in females and males, but enhanced sexual motivation in both. The current study is the first to examine the effects of ELS on sexual motivation using the LBN model. These findings further support the hypothesis that maternal care affects the development of sexual maturation and sexual motivation.


Subject(s)
Anxiety , Sexual Behavior, Animal , Stress, Psychological , Animals , Female , Male , Rats , Copulation , Rats, Long-Evans
15.
Biol Psychiatry ; 87(10): 875-884, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32081365

ABSTRACT

Disrupted operation of the reward circuitry underlies many aspects of affective disorders. Such disruption may manifest as aberrant behavior including risk taking, depression, anhedonia, and addiction. Early-life adversity is a common antecedent of adolescent and adult affective disorders involving the reward circuitry. However, whether early-life adversity influences the maturation and operations of the reward circuitry, and the potential underlying mechanisms, remain unclear. Here, we present novel information using cutting-edge technologies in animal models to dissect out the mechanisms by which early-life adversity provokes dysregulation of the complex interactions of stress and reward circuitries. We propose that certain molecularly defined pathways within the reward circuitry are particularly susceptible to early-life adversity. We examine regions and pathways expressing the stress-sensitive peptide corticotropin-releasing factor (CRF), which has been identified in critical components of the reward circuitry and interacting stress circuits. Notably, CRF is strongly modulated by early-life adversity in several of these brain regions. Focusing on amygdala nuclei and their projections, we provide evidence suggesting that aberrant CRF expression and function may underlie augmented connectivity of the nucleus accumbens with fear/anxiety regions, disrupting the function of this critical locus of pleasure and reward.


Subject(s)
Corticotropin-Releasing Hormone , Reward , Adolescent , Amygdala/metabolism , Anhedonia , Animals , Corticotropin-Releasing Hormone/metabolism , Humans , Nucleus Accumbens/metabolism
16.
Bio Protoc ; 10(15): e3699, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-33659365

ABSTRACT

Stress is crucial to the survival of an organism, but excessive stress can lead to psychological disorders including depression, anxiety, substance abuse, and suicidality. The prevailing notion is that chronic stress promotes adverse outcomes on brain and body health, whereas acute stressors are generally benign. Notably, acute events such mass shootings or natural disasters are now emerging as significant sources of cognitive and emotional problems including post-traumatic stress disorder (PTSD). These events are characterized by the simultaneous occurrence of physical, emotional, and social stresses, which last minutes to hours. Hence, there is a need to model such multiple concurrent acute stresses (MAS) to uncover the mechanisms by which they lead to profound adverse outcomes. The MAS paradigm described here involves simultaneously exposing a rodent to several different stressors including restraint, crowding, and jostling alongside peers in a brightly lit and very noisy environment. Moreover, the MAS paradigm can be used once or imposed repeatedly to emulate complex, repeated modern life stresses, advancing our mechanistic understanding of consequent mental and cognitive impairments.

17.
Life Sci Alliance ; 2(2)2019 04.
Article in English | MEDLINE | ID: mdl-30936186

ABSTRACT

Genetic and environmental factors interact during sensitive periods early in life to influence mental health and disease via epigenetic processes such as DNA methylation. However, it is not known if DNA methylation changes outside the brain provide an "epigenetic signature" of early-life experiences. Here, we used a novel intra-individual approach by testing DNA methylation from buccal cells of individual rats before and immediately after exposure to one week of typical or adverse life experience. We find that whereas inter-individual changes in DNA methylation reflect the effect of age, DNA methylation changes within paired DNA samples from the same individual reflect the impact of diverse neonatal experiences. Genes coding for critical cellular metabolic enzymes, ion channels, and receptors were more methylated in pups exposed to the adverse environment, predictive of their repression. In contrast, the adverse experience was associated with less methylation on genes involved in pathways of death and inflammation as well as cell-fate-related transcription factors, indicating their potential up-regulation. Thus, intra-individual methylome signatures indicate large-scale transcription-driven alterations of cellular fate, growth, and function.


Subject(s)
DNA Methylation/genetics , Epigenome/genetics , Stress, Psychological/genetics , Age Factors , Animals , Cohort Studies , CpG Islands/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Developmental/genetics , Rats , Rats, Sprague-Dawley
18.
Front Behav Neurosci ; 13: 30, 2019.
Article in English | MEDLINE | ID: mdl-30833892

ABSTRACT

Early-life experiences influence brain structure and function long-term, contributing to resilience or vulnerability to stress and stress-related disorders. Therefore, understanding the mechanisms by which early-life experiences program specific brain cells and circuits to shape life-long cognitive and emotional functions is crucial. We identify the population of corticotropin-releasing hormone (CRH)-expressing neurons in the hypothalamic paraventricular nucleus (PVN) as a key, early target of early-life experiences. Adverse experiences increase excitatory neurotransmission onto PVN CRH cells, whereas optimal experiences, such as augmented and predictable maternal care, reduce the number and function of glutamatergic inputs onto this cell population. Altered synaptic neurotransmission is sufficient to initiate large-scale, enduring epigenetic re-programming within CRH-expressing neurons, associated with stress resilience and additional cognitive and emotional outcomes. Thus, the mechanisms by which early-life experiences influence the brain provide tractable targets for intervention.

20.
Neurobiol Stress ; 8: 57-67, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29888304

ABSTRACT

Early-life adversity increases the risk for emotional disorders such as depression and schizophrenia. Anhedonia, thought to be a core feature of these disorders, is provoked by our naturalistic rodent model of childhood adversity (i.e., rearing pups for one week in cages with limited bedding and nesting, LBN). Drug use and addiction are highly comorbid with psychiatric disorders featuring anhedonia, yet effects of LBN on drug-seeking behavior and the reward and stress-related circuits that underlie it remain unknown. Here we examined the effects of LBN on cocaine intake and seeking, using a battery of behavioral tests measuring distinct aspects of cocaine reward, and for comparison, chocolate intake. We also examined activation of neurons within the pleasure/reward and stress circuits following cocaine in LBN and control rats. Early-life adversity reduced spontaneous intake of palatable chocolate, extending prior reports of sucrose and social-play anhedonia. In a within-session cocaine behavioral economic test, LBN rats self-administered lower dosages of cocaine under low-effort conditions, consistent with a reduced hedonic set-point for cocaine, and potentially anhedonia. In contrast, cocaine demand elasticity was not consistently affected, indicating no major changes in motivation to maintain preferred cocaine blood levels. These changes were selective, as LBN did not cause an overt anxiety-like phenotype, nor did it affect sensitivity to self-administered cocaine dose, responding for cocaine under extinction conditions, cocaine- or cue-induced reinstatement of cocaine seeking, or locomotor response to acute cocaine. However, high Fos expression was seen after cocaine in both reward- and stress-related brain regions of LBN rats, including nucleus accumbens core, central amygdala, and lateral habenula. In contrast, hypothalamic orexin neuron activation after cocaine was significantly attenuated in LBN rats. Together, these findings demonstrate enduring effects of early-life adversity on both reward- and fear/anxiety-related neural circuits, as well as anhedonia-like reductions in consumption of natural and drug rewards.

SELECTION OF CITATIONS
SEARCH DETAIL
...