Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 13(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37754112

ABSTRACT

Liposomes are prominent nanosystems for drug delivery, with potential extending beyond isolated drugs. Ethanol-aqueous plant extracts can be encapsulated within liposomes to protect bioactive compounds (secondary metabolites) from rapid oxidation and enable sustained release. Determining which compound classes are present in each extract and the encapsulation efficiency (EE) of these extracts in liposomes is crucial for nanocarrier functionality. This involves assessing the ratio of bioactive substances within liposomes to the total content. However, quantifying EE for non-isolated compounds poses challenges due to the need for advanced analytical equipment and biosensing approaches. This study introduces an innovative method for EE quantification, using a conductivity electrode (k = 0.842/cm) to establish an EE biosensing technology. By correlating dynamic light scattering (DLS), zeta potential (ZP), and electrical conductivity (Cnd) data with the conductivity meter's calibration curve, a robust relationship between the free extract concentration and Cnd (r2 ≥ 0.950) was established. Lavender-loaded liposomes demonstrated an EE of 56.33%, while wormwood and oregano formulations exhibited high EEs of 94.33% and 91.70%, respectively. In contrast, sage-loaded liposomes exhibited an inadequate EE, encapsulating only approximately 0.57% of the extract. The straightforward quantification of the free extract within liposome formulations, compared to more complex approaches, could facilitate EE determination and support future characterizations.


Subject(s)
Drug Delivery Systems , Liposomes , Calibration , Color , Electric Conductivity
2.
Biosensors (Basel) ; 13(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37504149

ABSTRACT

The global consumption of vegan foods is experiencing an expressive upward trend, underscoring the critical need for quality control measures based on nutritional and functional considerations. This study aimed to evaluate the functional quality of caviar and salmon analog food inks based on pulses combined with nano ingredients and produced in our laboratory (LNANO). The primary objective of this work was to determine the total antioxidant compounds contained in these samples using a voltammetric technique with a glassy carbon electrode. The samples underwent ethanolic extraction (70%) with 1 h of stirring. The voltammograms were acquired in a phosphate buffer electrolyte, pH 3.0 with Ag/AgCl (KCl 3 mol L-1) as the reference electrode and platinum wire as the auxiliary electrode. The voltammograms revealed prominent anodic current peaks at 0.76-0.78 V, which are attributed to isoflavones. Isoflavones, known secondary metabolites with substantial antioxidant potential commonly found in pulses, were identified. The total isoflavone concentrations obtained ranged from 31.5 to 64.3 mg Eq genistein 100 g-1. The results not only validated the efficacy of the electrochemical sensor for quantifying total antioxidant compounds in the samples but also demonstrated that the concentration of total isoflavones in caviar and salmon analogs fell within the expected limits.


Subject(s)
Antioxidants , Isoflavones , Animals , Genistein/analysis , Genistein/metabolism , Isoflavones/analysis , Isoflavones/metabolism , Seafood/analysis
3.
Materials (Basel) ; 13(23)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-33276688

ABSTRACT

Chagas is a neglected tropical disease caused by Trypanosoma cruzi, and affects about 25 million people worldwide. N, N'-Squaramide 17 (S) is a trypanocidal compound with relevant in vivo effectiveness. Here, we produced, characterized, and evaluated cytotoxic and trypanocidal effects of macrophage-mimetic liposomes from lipids extracted of RAW 264.7 cells to release S. As results, the average hydrodynamic diameter and Zeta potential of mimetic lipid membranes containing S (MLS) was 196.5 ± 11 nm and -61.43 ± 2.3 mV, respectively. Drug entrapment efficiency was 73.35% ± 2.05%. After a 72 h treatment, MLS was observed to be active against epimastigotes in vitro (IC50 = 15.85 ± 4.82 µM) and intracellular amastigotes (IC50 = 24.92 ± 4.80 µM). Also, it induced low cytotoxicity with CC50 of 1199.50 ± 1.22 µM towards VERO cells and of 1973.97 ± 5.98 µM in RAW 264.7. MLS also induced fissures in parasite membrane with a diameter of approximately 200 nm in epimastigotes. MLS showed low cytotoxicity in mammalian cells and high trypanocidal activity revealing this nanostructure a promising candidate for the development of Chagas disease treatment.

4.
IET Nanobiotechnol ; 9(4): 172-7, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26224345

ABSTRACT

Microemulsion-based animal oils, alone or associated with polymers have been extensively used in pharmacy, medicine and cosmetics, since the major lipid constituents of the oils show several biological activities. Despite showing antimicrobial activity, there are no reports in the literature regarding the effects of bullfrog oil on cytotoxic activity against tumor cells. The aim of the present study was to synthesize, characterise and evaluate the in vitro effects on melanoma cell line (B16F10) of bullfrog oil microemulsions associated or not with chitosan, surfactant and bullfrog oil (CSBO) and surfactant and bullfrog oil (SBO), respectively. The microemulsions were developed and their physical-chemical characteristics were evaluated by light microscopy, dynamic light scattering, atomic force microscopy and zeta potential. The microemulsions showed regular spherical shapes, high polydispersity and excellent (+82.2 ± 1.0 mV) to low (-16.0 ± 0.5 mV), colloidal stability. The systems significantly decreased the in vitro cell viability of melanoma skin cancer by up to 90.2% (CSBO) and 91.8% (SBO); while free bullfrog oil showed no effects. The results obtained from microemulsions of bullfrog oil indicate the potential of the microemulsions developed, alone or in combination with other chemotherapeutic agents, for future use in biomedical approaches aiming towards cancer therapy.


Subject(s)
Antineoplastic Agents/toxicity , Cell Survival/drug effects , Chitosan/chemistry , Emulsions/toxicity , Oils/toxicity , Rana catesbeiana/metabolism , Animals , Antineoplastic Agents/chemistry , Biological Products , Cell Line, Tumor , Emulsions/chemistry , Melanoma , Oils/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL