Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
Add more filters










Publication year range
1.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 147, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38436355

ABSTRACT

Five new Co-editors are appointed to the Editorial Board of Acta Cryst. D - Structural Biology.

2.
J Mol Biol ; 435(24): 168364, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37952770

ABSTRACT

Demixing of proteins and nucleic acids into condensed liquid phases is rapidly emerging as a ubiquitous mechanism underlying the complex spatiotemporal organisation of molecules within the cell. Long disordered regions of low sequence complexity (LCRs) are a common feature of proteins that form liquid-like microscopic biomolecular condensates. In particular, RNA-binding proteins with prion-like regions have emerged as key drivers of liquid demixing to form condensates such as nucleoli, paraspeckles and stress granules. Splicing factor proline- and glutamine-rich (SFPQ) is an RNA- and DNA-binding protein essential for DNA repair and paraspeckle formation. SFPQ contains two LCRs of different length and composition. Here, we show that the shorter C-terminal LCR of SFPQ is the main region responsible for the condensation of SFPQ in vitro and in the cell nucleus. In contrast, we find that the longer N-terminal prion-like LCR of SFPQ attenuates condensation of the full-length protein, suggesting a more regulatory role in preventing aberrant condensate formation in the cell. The compositions of these respective LCRs are discussed with reference to current literature. Our data add nuance to the emerging understanding of biomolecular condensation, by providing the first example of a common multifunctional nucleic acid-binding protein with an extensive prion-like region that serves to regulate rather than drive condensate formation.


Subject(s)
Biomolecular Condensates , Prions , RNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA , Prions/genetics , Prions/metabolism
3.
New Phytol ; 240(2): 830-845, 2023 10.
Article in English | MEDLINE | ID: mdl-37551058

ABSTRACT

Restorer-of-fertility (Rf) genes encode pentatricopeptide repeat (PPR) proteins that are targeted to mitochondria where they specifically bind to transcripts that induce cytoplasmic male sterility and repress their expression. In searching for a molecular signature unique to this class of proteins, we found that a majority of known Rf proteins have a distinct domain, which we called RfCTD (Restorer-of-fertility C-terminal domain), and its presence correlates with the ability to induce cleavage of the mitochondrial RNA target. A screen of 219 angiosperm genomes from 123 genera using a sequence profile that can quickly and accurately identify RfCTD sequences revealed considerable variation in RFL/RfCTD gene numbers across flowering plants. We observed that plant genera with bisexual flowers have significantly higher numbers of RFL genes compared to those with unisexual flowers, consistent with a role of these proteins in restoration of male fertility. We show that removing the RfCTD from the RFL protein RNA PROCESSING FACTOR 2-nad6 prevented cleavage of its RNA target, the nad6 transcript, in Arabidopsis thaliana mitochondria. We provide a simple way of identifying putative Rf candidates in genome sequences, new insights into the molecular mode of action of Rf proteins and the evolution of fertility restoration in flowering plants.


Subject(s)
Arabidopsis , Genes, Plant , Mitochondria/metabolism , Cytoplasm/metabolism , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Fertility/genetics , Plant Infertility/genetics
4.
PLoS Pathog ; 19(7): e1011491, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37399210

ABSTRACT

Coxiella burnetii is a Gram-negative intracellular pathogen that causes the debilitating disease Q fever, which affects both animals and humans. The only available human vaccine, Q-Vax, is effective but has a high risk of severe adverse reactions, limiting its use as a countermeasure to contain outbreaks. Therefore, it is essential to identify new drug targets to treat this infection. Macrophage infectivity potentiator (Mip) proteins catalyse the folding of proline-containing proteins through their peptidyl prolyl cis-trans isomerase (PPIase) activity and have been shown to play an important role in the virulence of several pathogenic bacteria. To date the role of the Mip protein in C. burnetii pathogenesis has not been investigated. This study demonstrates that CbMip is likely to be an essential protein in C. burnetii. The pipecolic acid derived compounds, SF235 and AN296, which have shown utility in targeting other Mip proteins from pathogenic bacteria, demonstrate inhibitory activities against CbMip. These compounds were found to significantly inhibit intracellular replication of C. burnetii in both HeLa and THP-1 cells. Furthermore, SF235 and AN296 were also found to exhibit antibiotic properties against both the virulent (Phase I) and avirulent (Phase II) forms of C. burnetii Nine Mile Strain in axenic culture. Comparative proteomics, in the presence of AN296, revealed alterations in stress responses with H2O2 sensitivity assays validating that Mip inhibition increases the sensitivity of C. burnetii to oxidative stress. In addition, SF235 and AN296 were effective in vivo and significantly improved the survival of Galleria mellonella infected with C. burnetii. These results suggest that unlike in other bacteria, Mip in C. burnetii is required for replication and that the development of more potent inhibitors against CbMip is warranted and offer potential as novel therapeutics against this pathogen.


Subject(s)
Coxiella burnetii , Q Fever , Animals , Humans , Peptidylprolyl Isomerase/metabolism , Bacterial Proteins/metabolism , Hydrogen Peroxide/metabolism , Bacteria/metabolism , Macrophages/metabolism
5.
J Synchrotron Radiat ; 30(Pt 4): 841-846, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37318368

ABSTRACT

A new high-pressure single-crystal diffraction setup has been designed and implemented at the Australian Synchrotron for collecting molecular and protein crystal structures. The setup incorporates a modified micro-Merrill-Bassett cell and holder designed specifically to fit onto the horizontal air-bearing goniometer, allowing high-pressure diffraction measurements to be collected with little to no modification of the beamline setup compared with ambient data collections. Compression data for the amino acid, L-threonine, and the protein, hen egg-white lysozyme, were collected, showcasing the capabilities of the setup.


Subject(s)
Proteins , Synchrotrons , Australia , Crystallography, X-Ray , Proteins/chemistry , Amino Acids
6.
Acta Crystallogr D Struct Biol ; 79(Pt 7): 556-558, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37378959

ABSTRACT

This editorial acknowledges the transformative impact of new machine-learning methods, such as the use of AlphaFold, but also makes the case for the continuing need for experimental structural biology.


Subject(s)
Biology , Machine Learning , Cryoelectron Microscopy , Crystallography, X-Ray , Protein Conformation
7.
IUCrJ ; 10(Pt 4): 377-379, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37358477

ABSTRACT

This editorial acknowledges the transformative impact of new machine-learning methods, such as the use of AlphaFold, but also makes the case for the continuing need for experimental structural biology.


Subject(s)
Biology , Machine Learning , Cryoelectron Microscopy , Crystallography, X-Ray
8.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 7): 166-168, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37358500

ABSTRACT

This editorial acknowledges the transformative impact of new machine-learning methods, such as the use of AlphaFold, but also makes the case for the continuing need for experimental structural biology.


Subject(s)
Biology , Cryoelectron Microscopy , Crystallography, X-Ray , Protein Conformation
9.
Nucleic Acids Res ; 51(13): 6841-6856, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37246713

ABSTRACT

Horizontal gene transfer is tightly regulated in bacteria. Often only a fraction of cells become donors even when regulation of horizontal transfer is coordinated at the cell population level by quorum sensing. Here, we reveal the widespread 'domain of unknown function' DUF2285 represents an 'extended-turn' variant of the helix-turn-helix domain that participates in both transcriptional activation and antiactivation to initiate or inhibit horizontal gene transfer. Transfer of the integrative and conjugative element ICEMlSymR7A is controlled by the DUF2285-containing transcriptional activator FseA. One side of the DUF2285 domain of FseA has a positively charged surface which is required for DNA binding, while the opposite side makes critical interdomain contacts with the N-terminal FseA DUF6499 domain. The QseM protein is an antiactivator of FseA and is composed of a DUF2285 domain with a negative surface charge. While QseM lacks the DUF6499 domain, it can bind the FseA DUF6499 domain and prevent transcriptional activation by FseA. DUF2285-domain proteins are encoded on mobile elements throughout the proteobacteria, suggesting regulation of gene transfer by DUF2285 domains is a widespread phenomenon. These findings provide a striking example of how antagonistic domain paralogues have evolved to provide robust molecular control over the initiation of horizontal gene transfer.


Subject(s)
Conjugation, Genetic , Proteobacteria , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Transfer, Horizontal , Proteobacteria/genetics , Quorum Sensing/genetics , Transcription Factors/metabolism , Transcriptional Activation
10.
EMBO Rep ; 24(2): e54977, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36416237

ABSTRACT

High-risk neuroblastoma patients have poor survival rates and require better therapeutic options. High expression of a multifunctional DNA and RNA-binding protein, NONO, in neuroblastoma is associated with poor patient outcome; however, there is little understanding of the mechanism of NONO-dependent oncogenic gene regulatory activity in neuroblastoma. Here, we used cell imaging, biochemical and genome-wide molecular analysis to reveal complex NONO-dependent regulation of gene expression. NONO forms RNA- and DNA-tethered condensates throughout the nucleus and undergoes phase separation in vitro, modulated by nucleic acid binding. CLIP analyses show that NONO mainly binds to the 5' end of pre-mRNAs and modulates pre-mRNA processing, dependent on its RNA-binding activity. NONO regulates super-enhancer-associated genes, including HAND2 and GATA2. Abrogating NONO RNA binding, or phase separation activity, results in decreased expression of HAND2 and GATA2. Thus, future development of agents that target RNA-binding activity of NONO may have therapeutic potential in this cancer context.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , DNA-Binding Proteins , Neuroblastoma , Humans , DNA/metabolism , DNA-Binding Proteins/genetics , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Neuroblastoma/genetics , Neuroblastoma/metabolism , RNA Processing, Post-Transcriptional , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
11.
J Biol Chem ; 298(11): 102563, 2022 11.
Article in English | MEDLINE | ID: mdl-36209820

ABSTRACT

RNA-binding proteins of the DBHS (Drosophila Behavior Human Splicing) family, NONO, SFPQ, and PSPC1 have numerous roles in genome stability and transcriptional and posttranscriptional regulation. Critical to DBHS activity is their recruitment to distinct subnuclear locations, for example, paraspeckle condensates, where DBHS proteins bind to the long noncoding RNA NEAT1 in the first essential step in paraspeckle formation. To carry out their diverse roles, DBHS proteins form homodimers and heterodimers, but how this dimerization influences DBHS localization and function is unknown. Here, we present an inducible GFP-NONO stable cell line and use it for live-cell 3D-structured illumination microscopy, revealing paraspeckles with dynamic, twisted elongated structures. Using siRNA knockdowns, we show these labeled paraspeckles consist of GFP-NONO/endogenous SFPQ dimers and that GFP-NONO localization to paraspeckles depends on endogenous SFPQ. Using purified proteins, we confirm that partner swapping between NONO and SFPQ occurs readily in vitro. Crystallographic analysis of the NONO-SFPQ heterodimer reveals conformational differences to the other DBHS dimer structures, which may contribute to partner preference, RNA specificity, and subnuclear localization. Thus overall, our study suggests heterodimer partner availability is crucial for NONO subnuclear distribution and helps explain the complexity of both DBHS protein and paraspeckle dynamics through imaging and structural approaches.


Subject(s)
Paraspeckles , RNA, Long Noncoding , Humans , Dimerization , RNA-Binding Proteins/metabolism , Gene Expression Regulation , RNA, Long Noncoding/genetics
12.
Acta Crystallogr D Struct Biol ; 78(Pt 10): 1210-1220, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36189741

ABSTRACT

The recombination directionality factors from Mesorhizobium spp. (RdfS) are involved in regulating the excision and transfer of integrative and conjugative elements. Here, solution small-angle X-ray scattering, and crystallization and preliminary structure solution of RdfS from Mesorhizobium japonicum R7A are presented. RdfS crystallizes in space group P212121, with evidence of eightfold rotational crystallographic/noncrystallographic symmetry. Initial structure determination by molecular replacement using ab initio models yielded a partial model (three molecules), which was completed after manual inspection revealed unmodelled electron density. The finalized crystal structure of RdfS reveals a head-to-tail polymer forming left-handed superhelices with large solvent channels. Additionally, RdfS has significant disorder in the C-terminal region of the protein, which is supported by the solution scattering data and the crystal structure. The steps taken to finalize structure determination, as well as the scattering and crystallographic characteristics of RdfS, are discussed.


Subject(s)
Polymers , Recombination, Genetic , Crystallography , Crystallography, X-Ray , Solvents , X-Rays
13.
Methods ; 208: 19-26, 2022 12.
Article in English | MEDLINE | ID: mdl-36265563

ABSTRACT

In native systems, gene expression is regulated by RNA binding proteins. Such proteins have been the target of a great deal of recent research interest, due to the potential for harnessing these regulatory effects for the construction of new biotechnological tools. In particular, focus has been targeted on building synthetic RNA binding proteins for sequence-specific targeting of new RNA transcripts. Pentatricopeptide repeat (PPR) proteins make compelling candidates as synthetic RNA binding proteins to target and bind RNA transcripts of interest, due to their defined RNA binding "code", modular structure, and native capability to deliver catalytic C-terminal domains. In this review, we present a summary of up-to-date understanding of RNA site recognition by PPR proteins, progress towards the design of synthetic PPR proteins for RNA targeting in vitro and in vivo, highlight key areas for further research around these proteins and present an outlook for future applications for synthetic PPR proteins as biotechnological tools.


Subject(s)
Arabidopsis Proteins , RNA , RNA/chemistry , Protein Binding , RNA-Binding Proteins/metabolism , Arabidopsis Proteins/metabolism , RNA, Plant/chemistry
14.
Nat Commun ; 13(1): 5563, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36137996

ABSTRACT

Decades of intense herbicide use has led to resistance in weeds. Without innovative weed management practices and new herbicidal modes of action, the unabated rise of herbicide resistance will undoubtedly place further stress upon food security. HMGR (3-hydroxy-3-methylglutaryl-coenzyme A reductase) is the rate limiting enzyme of the eukaryotic mevalonate pathway successfully targeted by statins to treat hypercholesterolemia in humans. As HMGR inhibitors have been shown to be herbicidal, HMGR could represent a mode of action target for the development of herbicides. Here, we present the crystal structure of a HMGR from Arabidopsis thaliana (AtHMG1) which exhibits a wider active site than previously determined structures from different species. This plant conserved feature enables the rational design of specific HMGR inhibitors and we develop a tolerance trait through sequence analysis of fungal gene clusters. These results suggest HMGR to be a viable herbicide target modifiable to provide a tolerance trait.


Subject(s)
Arabidopsis , Herbicides , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Acyl Coenzyme A , Arabidopsis/metabolism , Herbicides/pharmacology , Hydroxymethylglutaryl CoA Reductases/genetics , Hydroxymethylglutaryl CoA Reductases/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mevalonic Acid
15.
Plant Commun ; 3(4): 100322, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35605193

ABSTRACT

Herbicides are vital for modern agriculture, but their utility is threatened by genetic or metabolic resistance in weeds, as well as regulatory barriers. Of the known herbicide modes of action, 7,8-dihydropterin synthase (DHPS), which is involved in folate biosynthesis, is targeted by just one commercial herbicide, asulam. A mimic of the substrate para-aminobenzoic acid, asulam is chemically similar to sulfonamide antibiotics, and although it is still in widespread use, asulam has faced regulatory scrutiny. With an entire mode of action represented by just one commercial agrochemical, we sought to improve the understanding of its plant target. Here we solve a 2.3 Å resolution crystal structure for Arabidopsis thaliana DHPS that is conjoined to 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), and we reveal a strong structural conservation with bacterial counterparts at the sulfonamide-binding pocket of DHPS. We demonstrate that asulam and the antibiotic sulfamethoxazole have herbicidal as well as antibacterial activity, and we explore the structural basis of their potency by modeling these compounds in mitochondrial HPPK/DHPS. Our findings suggest limited opportunity for the rational design of plant selectivity from asulam and indicate that pharmacokinetic or delivery differences between plants and microbes might be the best ways to safeguard this mode of action.


Subject(s)
Arabidopsis , Herbicides , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Carbamates , Dihydropteroate Synthase/chemistry , Dihydropteroate Synthase/genetics , Dihydropteroate Synthase/metabolism , Herbicides/pharmacology , Sulfonamides/chemistry
16.
Front Genet ; 13: 791416, 2022.
Article in English | MEDLINE | ID: mdl-35464859

ABSTRACT

Oligonucleotides and nucleic acid analogues that alter gene expression are now showing therapeutic promise in human disease. Whilst the modification of synthetic nucleic acids to protect against nuclease degradation and to influence drug function is common practice, such modifications may also confer unexpected physicochemical and biological properties. Gapmer mixed-modified and DNA oligonucleotides on a phosphorothioate backbone can bind non-specifically to intracellular proteins to form a variety of toxic inclusions, driven by the phosphorothioate linkages, but also influenced by the oligonucleotide sequence. Recently, the non-antisense or other off-target effects of 2' O- fully modified phosphorothioate linkage oligonucleotides are becoming better understood. Here, we report chemistry-specific effects of oligonucleotides composed of modified or unmodified bases, with phosphorothioate linkages, on subnuclear organelles and show altered distribution of nuclear proteins, the appearance of highly stable and strikingly structured nuclear inclusions, and disturbed RNA processing in primary human fibroblasts and other cultured cells. Phosphodiester, phosphorodiamidate morpholino oligomers, and annealed complimentary phosphorothioate oligomer duplexes elicited no such consequences. Disruption of subnuclear structures and proteins elicit severe phenotypic disturbances, revealed by transcriptomic analysis of transfected fibroblasts exhibiting such disruption. Our data add to the growing body of evidence of off-target effects of some phosphorothioate nucleic acid drugs in primary cells and suggest alternative approaches to mitigate these effects.

17.
J Antimicrob Chemother ; 77(6): 1625-1634, 2022 05 29.
Article in English | MEDLINE | ID: mdl-35245364

ABSTRACT

BACKGROUND: The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip. OBJECTIVES: In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens. METHODS: Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens. RESULTS: Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays. CONCLUSIONS: These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications.


Subject(s)
Bacterial Proteins , Gram-Negative Bacteria , Leishmania major , Peptidylprolyl Isomerase , Protozoan Proteins , Bacterial Proteins/antagonists & inhibitors , Gram-Negative Bacteria/drug effects , Leishmania major/drug effects , Macrophages/metabolism , Neisseria meningitidis , Peptidylprolyl Isomerase/antagonists & inhibitors , Protozoan Proteins/antagonists & inhibitors , Recombinant Proteins
18.
IUCrJ ; 9(Pt 1): 1-2, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35059201

ABSTRACT

The editors discuss the submission of structural biology data.

19.
Nucleic Acids Res ; 50(2): 975-988, 2022 01 25.
Article in English | MEDLINE | ID: mdl-34904658

ABSTRACT

Horizontal transfer of the integrative and conjugative element ICEMlSymR7A converts non-symbiotic Mesorhizobium spp. into nitrogen-fixing legume symbionts. Here, we discover subpopulations of Mesorhizobium japonicum R7A become epigenetically primed for quorum-sensing (QS) and QS-activated horizontal transfer. Isolated populations in this state termed R7A* maintained these phenotypes in laboratory culture but did not transfer the R7A* state to recipients of ICEMlSymR7A following conjugation. We previously demonstrated ICEMlSymR7A transfer and QS are repressed by the antiactivator QseM in R7A populations and that the adjacently-coded DNA-binding protein QseC represses qseM transcription. Here RNA-sequencing revealed qseM expression was repressed in R7A* cells and that RNA antisense to qseC was abundant in R7A but not R7A*. Deletion of the antisense-qseC promoter converted cells into an R7A*-like state. An adjacently coded QseC2 protein bound two operator sites and repressed antisense-qseC transcription. Plasmid overexpression of QseC2 stimulated the R7A* state, which persisted following curing of this plasmid. The epigenetic maintenance of the R7A* state required ICEMlSymR7A-encoded copies of both qseC and qseC2. Therefore, QseC and QseC2, together with their DNA-binding sites and overlapping promoters, form a stable epigenetic switch that establishes binary control over qseM transcription and primes a subpopulation of R7A cells for QS and horizontal transfer.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Mesorhizobium , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Conjugation, Genetic , Genomic Islands , Mesorhizobium/genetics , Mesorhizobium/metabolism , Quorum Sensing , Symbiosis/genetics
20.
Nucleic Acids Res ; 50(1): 522-535, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34904671

ABSTRACT

The Drosophila behaviour/human splicing (DBHS) proteins are a family of RNA/DNA binding cofactors liable for a range of cellular processes. DBHS proteins include the non-POU domain-containing octamer-binding protein (NONO) and paraspeckle protein component 1 (PSPC1), proteins capable of forming combinatorial dimers. Here, we describe the crystal structures of the human NONO and PSPC1 homodimers, representing uncharacterized DBHS dimerization states. The structures reveal a set of conserved contacts and structural plasticity within the dimerization interface that provide a rationale for dimer selectivity between DBHS paralogues. In addition, solution X-ray scattering and accompanying biochemical experiments describe a mechanism of cooperative RNA recognition by the NONO homodimer. Nucleic acid binding is reliant on RRM1, and appears to be affected by the orientation of RRM1, influenced by a newly identified 'ß-clasp' structure. Our structures shed light on the molecular determinants for DBHS homo- and heterodimerization and provide a basis for understanding how DBHS proteins cooperatively recognize a broad spectrum of RNA targets.


Subject(s)
DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA/metabolism , Dimerization , Humans , Models, Molecular , Protein Conformation , RNA Splicing
SELECTION OF CITATIONS
SEARCH DETAIL
...