Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(21): 9339-9349, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748567

ABSTRACT

Residential lead (Pb) exposure is of critical concern to families globally as Pb promotes severe neurological effects in children, especially those less than 5 years old, and no blood lead level is deemed safe by the US Center for Disease Control. House dust and soils are commonly thought to be important sources of Pb exposure. Probing the relationship between house dust and soil Pb is critical to understanding residential exposure, as Pb bioavailability is highly influenced by Pb sources and/or species. We investigated paired house dust and soil collected from homes built before 1978 to determine Pb speciation, source, and bioaccessibility with the primary goal of assessing chemical factors driving Pb exposure in residential media. House dust was predominately found to contain (hydro)cerussite (i.e., Pb (hydroxy)carbonate) phases commonly used in Pb-based paint that, in-turn, promoted elevated bioaccessibility (>60%). Pb X-ray absorption spectroscopy, µ-XRF mapping, and Pb isotope ratio analysis for house dust and soils support house dust Pb as chemically unique compared to exterior soils, although paint Pb is expected to be a major source for both. Soil pedogenesis and increased protection from environmental conditions (e.g., weathering) in households is expected to greatly impact Pb phase differences between house dust and soils, subsequently dictating differences in Pb exposure.


Subject(s)
Dust , Lead , Soil Pollutants , Soil , Dust/analysis , Lead/analysis , Soil Pollutants/analysis , United States , Soil/chemistry , Housing , Humans , Environmental Monitoring
2.
Biogeochemistry ; 165(1): 91-111, 2023.
Article in English | MEDLINE | ID: mdl-37637456

ABSTRACT

Organo-mineral and organo-metal associations play an important role in the retention and accumulation of soil organic carbon (SOC). Recent studies have demonstrated a positive correlation between calcium (Ca) and SOC content in a range of soil types. However, most of these studies have focused on soils that contain calcium carbonate (pH > 6). To assess the importance of Ca-SOC associations in lower pH soils, we investigated their physical and chemical interaction in the grassland soils of Point Reyes National Seashore (CA, USA) at a range of spatial scales. Multivariate analyses of our bulk soil characterisation dataset showed a strong correlation between exchangeable Ca (CaExch; 5-8.3 c.molc kg-1) and SOC (0.6-4%) content. Additionally, linear combination fitting (LCF) of bulk Ca K-edge X-ray absorption near-edge structure (XANES) spectra revealed that Ca was predominantly associated with organic carbon across all samples. Scanning transmission X-ray microscopy near-edge X-ray absorption fine structure spectroscopy (STXM C/Ca NEXAFS) showed that Ca had a strong spatial correlation with C at the microscale. The STXM C NEXAFS K-edge spectra indicated that SOC had a higher abundance of aromatic/olefinic and phenolic C functional groups when associated with Ca, relative to C associated with Fe. In regions of high Ca-C association, the STXM C NEXAFS spectra were similar to the spectrum from lignin, with moderate changes in peak intensities and positions that are consistent with oxidative C transformation. Through this association, Ca thus seems to be preferentially associated with plant-like organic matter that has undergone some oxidative transformation, at depth in acidic grassland soils of California. Our study highlights the importance of Ca-SOC complexation in acidic grassland soils and provides a conceptual model of its contribution to SOC preservation, a research area that has previously been unexplored. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-023-01059-2.

3.
Proc Natl Acad Sci U S A ; 120(31): e2301260120, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37487097

ABSTRACT

Lithium-sulfur (Li-S) batteries with high energy density and low cost are promising for next-generation energy storage. However, their cycling stability is plagued by the high solubility of lithium polysulfide (LiPS) intermediates, causing fast capacity decay and severe self-discharge. Exploring electrolytes with low LiPS solubility has shown promising results toward addressing these challenges. However, here, we report that electrolytes with moderate LiPS solubility are more effective for simultaneously limiting the shuttling effect and achieving good Li-S reaction kinetics. We explored a range of solubility from 37 to 1,100 mM (based on S atom, [S]) and found that a moderate solubility from 50 to 200 mM [S] performed the best. Using a series of electrolyte solvents with various degrees of fluorination, we formulated the Single-Solvent, Single-Salt, Standard Salt concentration with Moderate LiPSs solubility Electrolytes (termed S6MILE) for Li-S batteries. Among the designed electrolytes, Li-S cells using fluorinated-1,2-diethoxyethane S6MILE (F4DEE-S6MILE) showed the highest capacity of 1,160 mAh g-1 at 0.05 C at room temperature. At 60 °C, fluorinated-1,4-dimethoxybutane S6MILE (F4DMB-S6MILE) gave the highest capacity of 1,526 mAh g-1 at 0.05 C and an average CE of 99.89% for 150 cycles at 0.2 C under lean electrolyte conditions. This is a fivefold increase in cycle life compared with other conventional ether-based electrolytes. Moreover, we observed a long calendar aging life, with a capacity increase/recovery of 4.3% after resting for 30 d using F4DMB-S6MILE. Furthermore, the correlation between LiPS solubility, degree of fluorination of the electrolyte solvent, and battery performance was systematically investigated.

4.
ACS Appl Mater Interfaces ; 15(14): 18343-18353, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37010122

ABSTRACT

Virus removal from water using microfiltration (MF) membranes is of great interest but remains challenging owing to the membranes' mean pore sizes typically being significantly larger than most viruses. We present microporous membranes grafted with polyzwitterionic brushes (N-dimethylammonium betaine) that combine bacteriophage removal in the range of ultrafiltration (UF) membranes with the permeance of MF membranes. Brush structures were grafted in two steps: free-radical polymerization followed by atom transfer radical polymerization (ATRP). Attenuated total reflection Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) verified that grafting occurred at both sides of the membranes and that the grafting increased with increasing the zwitterion monomer concentration. The log reduction values (LRVs) of the pristine membrane increased from less than 0.5 LRV for T4 (∼100 nm) and NT1 (∼50 nm) bacteriophages to up to 4.5 LRV for the T4 and 3.1 LRV for the NT1 for the brush-grafted membranes with a permeance of about 1000 LMH/bar. The high permeance was attributed to a high-water fraction in the ultra-hydrophilic brush structure. The high measured LRVs of the brush-grafted membranes were attributed to enhanced bacteriophages exclusion from the membrane surface and entrapment of the ones that penetrated the pores due to the membranes' smaller mean pore-size and cross-section porosity than those of the pristine membrane, as seen by scanning electron microscopy (SEM) and measured using liquid-liquid porometry. Micro X-ray fluorescence (µ-XRF) spectrometry and nanoscale secondary ion mass spectrometry showed that 100 nm Si-coated gold nanospheres accumulated on the surface of the pristine membrane but not on the brush-coated membrane and that the nanospheres that penetrated the membranes were entrapped in the brush-grafted membrane but passed the pristine one. These results corroborate the LRVs obtained during filtration experiments and support the inference that the increased removal was due to a combined exclusion mechanism and entrapment. Overall, these microporous brush-grafted membranes show potential for use in advanced water treatment.

5.
Environ Sci Technol ; 57(10): 4354-4366, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36848522

ABSTRACT

Groundwater uranium (U) concentrations have been measured above the U.S. EPA maximum contaminant level (30 µg/L) in many U.S. aquifers, including in areas not associated with anthropogenic contamination by milling or mining. In addition to carbonate, nitrate has been correlated to uranium groundwater concentrations in two major U.S. aquifers. However, to date, direct evidence that nitrate mobilizes naturally occurring U from aquifer sediments has not been presented. Here, we demonstrate that the influx of high-nitrate porewater through High Plains alluvial aquifer silt sediments bearing naturally occurring U(IV) can stimulate a nitrate-reducing microbial community capable of catalyzing the oxidation and mobilization of U into the porewater. Microbial reduction of nitrate yielded nitrite, a reactive intermediate, which was further demonstrated to abiotically mobilize U from the reduced alluvial aquifer sediments. These results indicate that microbial activity, specifically nitrate reduction to nitrite, is one mechanism driving U mobilization from aquifer sediments in addition to previously described bicarbonate-driven desorption from mineral surfaces, such as Fe(III) oxides.


Subject(s)
Groundwater , Uranium , Water Pollutants, Radioactive , Nitrates , Ferric Compounds , Nitrites , Geologic Sediments , Water Pollutants, Radioactive/analysis
6.
Environ Sci Technol ; 56(22): 15718-15727, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36239028

ABSTRACT

Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of <1%, compared to original soils possessing bioaccessibility of >70%. However, this technique requires heat (95-100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (<10%) PLJ, with soil being converted to 100% PLJ using both heated and nonheated techniques. µ-X-ray fluorescence (µ-XRF) and µ-X-ray absorption near-edge structure (µ-XANES) showcase significant differences between elemental interactions for heated and nonheated PLJ-treated samples with anglesite impurities being found on the microscale. Although further development is necessary to accommodate for suitable field conditions, results indicate, for the first time, that K-jarosite may successfully convert soil Pb to PLJ without high-temperature conditions. The newfound utility of K-jarosite is expected to be key to future jarosite-based soil Pb remediation method development.


Subject(s)
Soil Pollutants , Soil Pollutants/chemistry , Lead/analysis , Potassium/analysis , Temperature , Soil/chemistry , Biological Availability , Minerals/chemistry
7.
Environ Sci Technol ; 56(16): 11354-11362, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35926116

ABSTRACT

Biochars can remove potentially toxic elements, such as inorganic mercury [Hg(II)] from contaminated waters. However, their performance in complex water matrices is rarely investigated, and the combined roles of natural organic matter (NOM) and ionic composition in the removal of Hg(II) by biochar remain unclear. Here, we investigate the influence of NOM and major ions such as chloride (Cl-), nitrate (NO3-), calcium (Ca2+), and sodium (Na+) on Hg(II) removal by a wood-based biochar (SWP700). Multiple sorption sites containing sulfur (S) were located within the porous SWP700. In the absence of NOM, Hg(II) removal was driven by these sites. Ca2+ bridging was important in enhancing removal of negatively charged Hg(II)-chloro complexes. In the presence of NOM, formation of soluble Hg-NOM complexes (as seen from speciation calculations), which have limited access to biochar pores, suppressed Hg(II) removal, but Cl- and Ca2+ could still facilitate it. The ability of Ca2+ to aggregate NOM, including Hg-NOM complexes, promoted Hg(II) removal from the dissolved fraction (<0.45 µm). Hg(II) removal in the presence of Cl- followed a stepwise mechanism. Weakly bound oxygen functional groups in NOM were outcompeted by Cl-, forming smaller-sized Hg(II)-chloro complexes, which could access additional intraparticle sorption sites. Therein, Cl- was outcompeted by S, which finally immobilized Hg(II) in SWP700 as confirmed by extended X-ray absorption fine structure spectroscopy. We conclude that in NOM containing oxic waters, with relatively high molar ratios of Cl-: NOM and Ca2+: NOM, Hg(II) removal can still be effective with SWP700.


Subject(s)
Mercury , Charcoal , Ions , Mercury/chemistry , Water , Wood
8.
Environ Sci Technol ; 55(23): 15950-15960, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34806356

ABSTRACT

Lead (Pb) contamination of soils is of global concern due to the devastating impacts of Pb exposure in children. Because early-life exposure to Pb has long-lasting health effects, reducing exposure in children is a critical public health goal that has intensified research on the conversion of soil Pb to low bioavailability phases. Recently, plumbojarosite (PLJ) conversion of highly available soil Pb was found to decrease Pb relative bioavailability (RBA <10%). However, there is sparse information concerning interactions between Pb and other elements when contaminated soil, pre- and post-remediation, is ingested and moves through the gastrointestinal tract (GIT). Addressing this may inform drivers of effective chemical remediation strategies. Here, we utilize bulk and micro-focused Pb X-ray absorption spectroscopy to probe elemental interactions and Pb speciation in mouse diet, cecum, and feces samples following ingestion of contaminated soils pre- and post-PLJ treatment. RBA of treated soils was less than 1% with PLJ phases transiting the GIT with little absorption. In contrast, Pb associated with organics was predominantly found in the cecum. These results are consistent with transit of insoluble PLJ to feces following ingestion. The expanded understanding of Pb interactions during GIT transit complements our knowledge of elemental interactions with Pb that occur at higher levels of biological organization.


Subject(s)
Soil Pollutants , Soil , Animals , Biological Availability , Environmental Pollution , Mice , Soil Pollutants/analysis , X-Ray Absorption Spectroscopy
9.
J Hazard Mater ; 412: 125089, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33517059

ABSTRACT

Uranium minerals are commonly found in soils and sediment across the United States at an average concentration of 2-4 mg/kg. Uranium occurs in the environment primarily in two forms, the oxidized, mostly soluble uranium(VI) form, or the reduced, sparingly soluble reduced uranium(IV) form. Here we describe subsurface geochemical conditions that result in low uranium concentrations in an alluvial aquifer with naturally occurring uranium in soils and sediments in the presence of complexing ligands under oxidizing conditions. Groundwater was saturated with respect to calcite and contained calcium (78-90 mg/L) with elevated levels of carbonate alkalinity (291-416 mg/L as HCO3-). X-ray adsorption near edge structure (XANES) spectroscopy identified that sediment-associated uranium was oxidized as a uranium(VI) form (85%). Calcite was the predominant mineral by mass in the ultrafine fraction in uranium-bearing sediments (>16 mg/kg). Groundwater geochemical modeling indicated calcite and/or a calcium-uranyl-carbonate mineral such as liebigite in equilibrium with groundwater. The δ13C (0.57‰ ± 0.15‰) was indicative of abiotic carbonate deposition. Thus, solid-phase uranium(VI) associated with carbonate is likely maintaining uranium(VI) groundwater levels below the maximum contaminant level (MCL; 30 µg/L), presenting a deposition mechanism for uranium attenuation rather than solely a means of mobilization.

10.
Environ Sci Technol ; 54(3): 1493-1502, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31886668

ABSTRACT

Uranium contamination threatens the availability of safe and clean drinking water globally. This toxic element occurs both naturally and as a result of mining and ore-processing in alluvial sediments, where it accumulates as tetravalent U [U(IV)], a form once considered largely immobile. Changing hydrologic and geochemical conditions cause U to be released into groundwater. Knowledge of the chemical form(s) of U(IV) is essential to understand the release mechanism, yet the relevant U(IV) species are poorly characterized. There is growing belief that natural organic matter (OM) binds U(IV) and mediates its fate in the subsurface. In this work, we combined nanoscale imaging (nano secondary ion mass spectrometry and scanning transmission X-ray microscopy) with a density-based fractionation approach to physically and microscopically isolate organic and mineral matter from alluvial sediments contaminated with uranium. We identified two populations of U (dominantly +IV) in anoxic sediments. Uranium was retained on OM and adsorbed to particulate organic carbon, comprising both microbial and plant material. Surprisingly, U was also adsorbed to clay minerals and OM-coated clay minerals. The dominance of OM-associated U provides a framework to understand U mobility in the shallow subsurface, and, in particular, emphasizes roles for desorption and colloid formation in its mobilization.


Subject(s)
Groundwater , Uranium , Water Pollutants, Radioactive , Geologic Sediments , Minerals , Mining
11.
J Am Chem Soc ; 141(49): 19404-19414, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31794205

ABSTRACT

A major chemical challenge facing implementation of 225Ac in targeted alpha therapy-an emerging technology that has potential for treatment of disease-is identifying an 225Ac chelator that is compatible with in vivo applications. It is unclear how to tailor a chelator for Ac binding because Ac coordination chemistry is poorly defined. Most Ac chemistry is inferred from radiochemical experiments carried out on microscopic scales. Of the few Ac compounds that have been characterized spectroscopically, success has only been reported for simple inorganic ligands. Toward advancing understanding in Ac chelation chemistry, we have developed a method for characterizing Ac complexes that contain highly complex chelating agents using small quantities (µg) of 227Ac. We successfully characterized the chelation of Ac3+ by DOTP8- using EXAFS, NMR, and DFT techniques. To develop confidence and credibility in the Ac results, comparisons with +3 cations (Am, Cm, and La) that could be handled on the mg scale were carried out. We discovered that all M3+ cations (M = Ac, Am, Cm, La) were completely encapsulated within the binding pocket of the DOTP8- macrocycle. The computational results highlighted the stability of the M(DOTP)5- complexes.


Subject(s)
Actinium/chemistry , Americium/chemistry , Chelating Agents/chemistry , Coordination Complexes/chemical synthesis , Curium/chemistry , Lanthanum/chemistry , Organophosphorus Compounds/chemistry , Radiopharmaceuticals/chemical synthesis , Coordination Complexes/chemistry , Ligands , Molecular Structure , Radiopharmaceuticals/chemistry
12.
ACS Cent Sci ; 5(3): 494-505, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30937377

ABSTRACT

Radionuclides find widespread use in medical technologies for treating and diagnosing disease. Among successful and emerging radiotherapeutics, 119Sb has unique potential in targeted therapeutic applications for low-energy electron-emitting isotopes. Unfortunately, developing 119Sb-based drugs has been slow in comparison to other radionuclides, primarily due to limited accessibility. Herein is a production method that overcomes this challenge and expands the available time for large-scale distribution and use. Our approach exploits high flux and fluence from high-energy proton sources to produce longer lived 119mTe. This parent isotope slowly decays to 119Sb, which in turn provides access to 119Sb for longer time periods (in comparison to direct 119Sb production routes). We contribute the target design, irradiation conditions, and a rapid procedure for isolating the 119mTe/119Sb pair. To guide process development and to understand why the procedure was successful, we characterized the Te/Sb separation using Te and Sb K-edge X-ray absorption spectroscopy. The procedure provides low-volume aqueous solutions that have high 119mTe-and consequently 119Sb-specific activity in a chemically pure form. This procedure has been demonstrated at large-scale (production-sized, Ci quantities), and the product has potential to meet stringent Food and Drug Administration requirements for a 119mTe/119Sb active pharmaceutical ingredient.

13.
J Colloid Interface Sci ; 547: 171-182, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30954001

ABSTRACT

Iron (Fe) (oxyhydr)oxide minerals, which are amongst most reactive minerals in soils and sediments, are known to exhibit strong adsorption of inorganic phosphate (Pi) and organophosphate (Po) compounds. Beyond synthetic Po compounds, much still remains unknown about the reactivity of these minerals to transform naturally-occurring Po compounds to Pi, particularly with respect to solution versus surface speciation of Po hydrolysis. To investigate this reactivity with a ferrihydrite-type mineral and ribonucleotides, we employed high-resolution liquid chromatography-mass spectrometry (LC-MS), X-ray absorption near-edge structure (XANES), Fourier-transform infrared (FTIR) spectroscopy, and molecular modeling. Kinetic experiments were conducted with the mineral (1 g L-1) reacted with adenosine monophosphate, diphosphate, or triphosphate (respectively AMP, ADP, ATP; 50 µM). Analysis of solution organic species by LC-MS implied that only adsorption occurred with AMP and ADP but both adsorption and dephosphorylation of ATP were evident. Maximum adsorption capacities per gram of mineral were 40.6 ±â€¯0.8 µmol AMP, 35.7 ±â€¯1.6 µmol ADP, and 10.9 ±â€¯1.0 µmol ATP; solution dephosphorylated by-products accounted for 15% of initial ATP. Subsequent XANES analysis of the surface species revealed that 16% of adsorbed AMP and 30% of adsorbed ATP were subjected to dephosphorylation, which was not fully quantifiable from the solution measurements. Molecular simulations predicted that ADP and ATP were complexed mainly via the phosphate groups whereas AMP binding also involved multiple hydrogen bonds with the adenosine moiety; our FTIR data confirmed these binding confirmations. Our findings thus imply that specific adsorption mechanisms dictate the recycling and subsequent trapping of Pi from ribonucleotide-like biomolecules reacted with Fe (oxyhydr)oxide minerals.


Subject(s)
Ferric Compounds/chemistry , Minerals/chemistry , Phosphorus/chemistry , Ribonucleotides/chemistry , Adsorption , Kinetics , Molecular Conformation , Molecular Dynamics Simulation , Particle Size , Solutions , Surface Properties
14.
J Am Chem Soc ; 140(51): 17977-17984, 2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30540455

ABSTRACT

Evaluating the nature of chemical bonding for actinide elements represents one of the most important and long-standing problems in actinide science. We directly address this challenge and contribute a Cl K-edge X-ray absorption spectroscopy and relativistic density functional theory study that quantitatively evaluates An-Cl covalency in AnCl62- (AnIV = Th, U, Np, Pu). The results showed significant mixing between Cl 3p- and AnIV 5f- and 6d-orbitals (t1u*/t2u* and t2 g*/eg *), with the 6d-orbitals showing more pronounced covalent bonding than the 5f-orbitals. Moving from Th to U, Np, and Pu markedly changed the amount of M-Cl orbital mixing, such that AnIV 6d - and Cl 3p-mixing decreased and metal 5f - and Cl 3p-orbital mixing increased across this series.

15.
Chem Sci ; 9(35): 7078-7090, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30310628

ABSTRACT

Understanding actinide(iii) (AnIII = CmIII, AmIII, AcIII) solution-phase speciation is critical for controlling many actinide processing schemes, ranging from medical applications to reprocessing of spent nuclear fuel. Unfortunately, in comparison to most elements in the periodic table, AnIII speciation is often poorly defined in complexing aqueous solutions and in organic media. This neglect - in large part - is a direct result of the radioactive properties of these elements, which make them difficult to handle and acquire. Herein, we surmounted some of the handling challenges associated with these exotic 5f-elements and characterized CmIII, AmIII, and AcIII using AnIII L3-edge X-ray absorption spectroscopy (XAS) as a function of increasing nitric acid (HNO3) concentration. Our results revealed that actinide aquo ions, An(H2O) x 3+ (x = 9.6 ± 0.7, 8.9 ± 0.8, and 10.0 ± 0.9 for CmIII, AmIII, and AcIII), were the dominant species in dilute HNO3 (0.05 M). In concentrated HNO3 (16 M), shell-by-shell fitting of the extended X-ray fine structure (EXAFS) data showed the nitrate complexation increased, such that the average stoichiometries of Cm(NO3)4.1±0.7(H2O)5.7±1.3 (1.1±0.2)-, Am(NO3)3.4±0.7(H2O)5.4±0.5 (0.4±0.1)-, and Ac(NO3)2.3±1.7(H2O)8.3±5.2 (0.7±0.5)+ were observed. Data obtained at the intermediate HNO3 concentration (4 M) were modeled as a linear combination of the 0.05 and 16 M spectra. For all three metals, the intermediate models showed larger contributions from the 0.05 M HNO3 spectra than from the 16 M HNO3 spectra. Additionally, these efforts enabled the Cm-NO3 and Ac-NO3 distances to be measured for the first time. Moreover, the AnIII L3-edge EXAFS results, contribute to the growing body of knowledge associated with CmIII, AmIII, and AcIII coordination chemistry, in particular toward advancing understanding of AnIII solution phase speciation.

16.
Inorg Chem ; 57(11): 6530-6539, 2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29749729

ABSTRACT

Uranium complexes (MesDAE)2U(THF) (1-DAE) and Cp2U(MesDAE) (2-DAE) (MesDAE = [ArN-CH2CH2-NAr]; Ar = 2,4,6-trimethylphenyl (Mes)), bearing redox-innocent diamide ligands, have been synthesized and characterized for a full comparison with previously published, redox-active diimine complexes, (MesDABMe)2U(THF) (1-DAB) and Cp2U(MesDABMe) (2-DAB) (MesDABMe = [ArN═C(Me)C(Me)═NAr]; Ar = Mes). These redox-innocent analogues maintain an analogous steric environment to their redox-active ligand counterparts to facilitate a study aimed at determining the differing electronic behavior around the uranium center. Structural analysis by X-ray crystallography showed 1-DAE and 2-DAE have a structural environment very similar to 1-DAB and 2-DAB, respectively. The main difference occurs with coordination of the ene-backbone to the uranium center in the latter species. Electronic absorption spectroscopy reveals these new DAE complexes are nearly identical to each other. X-ray absorption spectroscopy suggests all four species contain +4 uranium ions. The data also indicates that there is an electronic difference between the bis(diamide)-THF uranium complexes as opposed to those that only contain one diamide and two cyclopentadienyl rings. Finally, magnetic measurements reveal that all complexes display temperature-dependent behavior consistent with uranium(IV) ions that do not include ligand radicals. Overall, this study determines that there is no significant bonding difference between the redox-innocent and redox-active ligand frameworks on uranium. Furthermore, there are no data to suggest covalent bonding character using the latter ligand framework on uranium, despite what is known for transition metals.

17.
Environ Sci Technol ; 51(19): 10954-10964, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28873299

ABSTRACT

Aquifers in the Upper Colorado River Basin (UCRB) exhibit persistent uranium (U) groundwater contamination plumes originating from former ore processing operations. Previous observations at Rifle, Colorado, have shown that fine grained, sulfidic, organic-enriched sediments accumulate U in its reduced form, U(IV), which is less mobile than oxidized U(VI). These reduced sediment bodies can subsequently act as secondary sources, releasing U back to the aquifer. There is a need to understand if U(IV) accumulation in reduced sediments is a common process at contaminated sites basin-wide, to constrain accumulated U(IV) speciation, and to define the biogeochemical factors controlling its reactivity. We have investigated U(IV) accumulation in organic-enriched reduced sediments at three UCRB floodplains. Noncrystalline U(IV) is the dominant form of accumulated U, but crystalline U(IV) comprises up to ca. 30% of total U at some locations. Differing susceptibilities of these species to oxidative remobilization can explain this variability. Particle size, organic carbon content, and pore saturation, control the exposure of U(IV) to oxidants, moderating its oxidative release. Further, our data suggest that U(IV) can be mobilized under deeply reducing conditions, which may contribute to maintenance and seasonal variability of U in groundwater plumes in the UCRB.


Subject(s)
Groundwater/chemistry , Sulfides/chemistry , Uranium/chemistry , Water Pollutants, Radioactive/chemistry , Colorado , Groundwater/analysis , Oxidation-Reduction , Particle Size , Rivers , Water Pollutants, Radioactive/analysis
18.
Environ Sci Technol ; 51(19): 11039-11047, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28876920

ABSTRACT

Uranium (U) contamination occurs as a result of mining and ore processing; often in alluvial aquifers that contain organic-rich, reduced sediments that accumulate tetravalent U, U(IV). Uranium(IV) is sparingly soluble, but may be mobilized upon exposure to nitrate (NO3-) and oxygen (O2), which become elevated in groundwater due to seasonal fluctuations in the water table. The extent to which oxidative U mobilization can occur depends upon the transport properties of the sediments, the rate of U(IV) oxidation, and the availability of inorganic reductants and organic electron donors that consume oxidants. We investigated the processes governing U release upon exposure of reduced sediments to artificial groundwater containing O2 or NO3- under diffusion-limited conditions. Little U was mobilized during the 85-day reaction, despite rapid diffusion of groundwater within the sediments and the presence of nonuraninite U(IV) species. The production of ferrous iron and sulfide in conjunction with rapid oxidant consumption suggested that the sediments harbored large concentrations of bioavailable organic carbon that fueled anaerobic microbial respiration and stabilized U(IV). Our results suggest that seasonal influxes of O2 and NO3- may cause only localized mobilization of U without leading to export of U from the reducing sediments when ample organic carbon is present.


Subject(s)
Groundwater , Uranium , Water Pollutants, Radioactive , Geologic Sediments , Oxidation-Reduction , Oxidative Stress
19.
Proc Natl Acad Sci U S A ; 114(4): 711-716, 2017 01 24.
Article in English | MEDLINE | ID: mdl-28069941

ABSTRACT

Uranium is an important carbon-free fuel source and environmental contaminant that accumulates in the tetravalent state, U(IV), in anoxic sediments, such as ore deposits, marine basins, and contaminated aquifers. However, little is known about the speciation of U(IV) in low-temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO2+x) in anoxic sediments; however, studies now show that this is not often the case. Yet a model of U(IV) speciation in the absence of mineral formation under field-relevant conditions has not yet been developed. Uranium(IV) speciation controls its reactivity, particularly its susceptibility to oxidative mobilization, impacting its distribution and toxicity. Here we show adsorption to organic carbon and organic carbon-coated clays dominate U(IV) speciation in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that U(IV) speciation is dictated by the mode of reduction (i.e., whether reduction is mediated by microbes or by inorganic reductants), our results demonstrate that mineral formation can be diminished in favor of adsorption, regardless of reduction pathway. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider U(IV) adsorption to organic matter within the sediment environment.

20.
Plant Soil ; 419(1): 113-126, 2017.
Article in English | MEDLINE | ID: mdl-32009679

ABSTRACT

BACKGROUND AND AIMS: Decomposition and transformation of organic matter (OM) in forest soils are conducted by the concomitant action of saprotrophic and mycorrhizal fungi. Here, we examine chemical changes in OM after fungal colonization in nitrogen fertilized and unfertilized soils from a Norway spruce forest. METHODS: Sand-filled bags amended with composted maize leaves were placed in the forest soil and harvested after 17 months. Infrared and near edge X-ray absorption fine structure spectroscopies were used to study the chemical changes in the OM. Fungal community composition of the bags was also evaluated. RESULTS: The proportion of ectomycorrhizal fungi declined in the fertilized plots, but the overall fungal community composition was similar between N treatments. Decomposition of the OM was, independently of the N level or soil horizon, accompanied by an increase of C/N ratio of the mesh-bag content. Moreover, the proportions of carboxylic compounds in the incubated OM increased in the mineral horizon, while heterocyclic-N compounds decreased, especially in unfertilized plots with higher N demand from the trees. CONCLUSIONS: Our results indicate that more oxidized organic C and less heterocyclic-N proportions in the OM remain after fungal colonization in the mineral layers, and suggest that ectomycorrhizal fungi transfer less heterocyclic-N from the mesh bags to the host trees under high N levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...