Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1391968, 2024.
Article in English | MEDLINE | ID: mdl-38841062

ABSTRACT

The Bagno dell'Acqua lake is characterized by CO2 emissions, alkaline waters (pH = 9) and Eh values which indicate strongly oxidizing conditions. A typical feature of the lake is the presence of actively growing microbialites rich in calcium carbonates and silica precipitates. Mineralogy, petrography and morphology analyses of the microbialites were coupled with the analysis of the microbial community, combining molecular and cultivation approaches. The DNA sequencing revealed distinct patterns of microbial diversity, showing pronounced differences between emerged and submerged microbialite, with the upper layer of emerged samples exhibiting the most distinctive composition, both in terms of prokaryotes and eukaryotes. In particular, the most representative phyla in the microbial community were Proteobacteria, Actinobacteriota, and Bacteroidota, while Cyanobacteria were present only with an average of 5%, with the highest concentration in the submerged intermediate layer (12%). The role of microorganisms in carbonate mineral formation was clearly demonstrated as most of the isolates were able to precipitate calcium carbonate and five of them were characterized at molecular level. Interestingly, when microbial isolates were cultivated only in filtered water, the precipitation of hazenite was observed (up to 85%), opening new prospective in P (phosphate) recovery from P depleted environments.

2.
Eur J Cancer ; 183: 79-89, 2023 04.
Article in English | MEDLINE | ID: mdl-36801623

ABSTRACT

BACKGROUND: Precision oncology aims to improve clinical outcomes by personalising treatment options for patients with cancer. Exploiting vulnerabilities identified in a patient's cancer genome requires reliable interpretation of a huge mole of alterations and heterogeneous biomarkers. ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT) allows evidence-based evaluation of genomic findings. Molecular tumour boards (MTBs) convey the required multi-disciplinary expertise to enable ESCAT evaluation and strategical treatment choice. MATERIALS AND METHOD: We retrospectively reviewed the records of 251 consecutive patients discussed by European Institute of Oncology MTB between June 2019 and June 2022. RESULTS: One-hundred eighty-eight (74.6%) patients had at least one actionable alteration. After MTB discussion, 76 patients received molecularly matched therapies (MMTs) while 76 patients received standard of care. Patients receiving MMT displayed higher overall response rate (37.3% versus 12.9%), median progression-free survival (mPFS 5.8 months, 95% confidence interval [CI] 4.1-7.5 versus 3.6 months, 95% CI 2.5-4.8, p = 0.041; hazard ratio 0.679, 95% CI 0.467-0.987) and median overall survival (mOS 35.1 months, 95% CI not evaluable versus 8.5 months, 95% CI 3.8-13.2; hazard ratio 0.431, 95% CI 0.250-0.744, p = 0.002). Superiority in OS and PFS persisted in multivariable models. Among 61 pretreated patients receiving MMT, 37.5% of patients had PFS2/PFS1 ratio ≥1.3. Patients with higher actionable targets (ESCAT tier I) had better OS (p = 0.001) and PFS (p = 0.049), while no difference was observed in lower evidence levels. CONCLUSIONS: Our experience shows that MTBs can yield valuable clinical benefit. Higher actionability ESCAT level appears to be associated with better outcomes for patients receiving MMT.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Neoplasms/drug therapy , Retrospective Studies , Precision Medicine , Medical Oncology , Genomics
3.
Front Neurosci ; 15: 763235, 2021.
Article in English | MEDLINE | ID: mdl-34949982

ABSTRACT

Deep brain stimulation (DBS) is used for the treatment of movement disorders, including Parkinson's disease, dystonia, and essential tremor, and has shown clinical benefits in other brain disorders. A natural path for the improvement of this technique is to continuously observe the stimulation effects on patient symptoms and neurophysiological markers. This requires the evolution of conventional deep brain stimulators to bidirectional interfaces, able to record, process, store, and wirelessly communicate neural signals in a robust and reliable fashion. Here, we present the architecture, design, and first use of an implantable stimulation and sensing interface (AlphaDBSR System) characterized by artifact-free recording and distributed data management protocols. Its application in three patients with Parkinson's disease (clinical trial n. NCT04681534) is shown as a proof of functioning of a clinically viable implanted brain-computer interface (BCI) for adaptive DBS. Reliable artifact free-recordings, and chronic long-term data and neural signal management are in place.

4.
Environ Int ; 123: 156-163, 2019 02.
Article in English | MEDLINE | ID: mdl-30529840

ABSTRACT

Traffic-related emissions include gas and particles that can alter air quality and affect human and environmental health. Limited studies have demonstrated that particulate debris thrown off from brakes are toxic to higher plants. The acute phytotoxicity of brake pad wear debris (BPWD) investigated using cress seeds grown in soil contaminated with increasing concentrations of debris. Two types of pads were used: a commercially available phenol based pad and an innovative cement-based pad developed within of the LIFE+ COBRA project. The results suggested that even through the BPWD generated by the two pads were similar in and morphology, debris from traditional pads were more phytotoxic than that from cementitious pads, causing significant alterations in terms of root elongation and loss of plasma membrane integrity.


Subject(s)
Lepidium sativum/drug effects , Particulate Matter/toxicity , Vehicle Emissions/toxicity , Automobiles , Germination/drug effects , Humans , Particulate Matter/chemistry , Plant Roots/drug effects , Plant Roots/growth & development , Toxicity Tests
5.
IEEE Trans Biomed Circuits Syst ; 9(1): 50-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25486648

ABSTRACT

One of the most difficult tasks for the surgeon during the removal of low-grade gliomas is to identify as precisely as possible the borders between functional and non-functional brain tissue with the aim of obtaining the maximal possible resection which allows to the patient the longer survival. For this purpose, systems for acute extracellular recordings of single neuron and multi-unit activity are considered promising. Here we describe a system to be used with 16 microelectrodes arrays that consists of an autoclavable headstage, a built-in inserter for precise electrode positioning and a system that measures and controls the pressure exerted by the headstage on the brain with a twofold purpose: to increase recording stability and to avoid disturbance of local perfusion which would cause a degradation of the quality of the recording and, eventually, local ischemia. With respect to devices where only electrodes are autoclavable, our design permits the reduction of noise arising from long cable connections preserving at the same time the flexibility and avoiding long-lasting gas sterilization procedures. Finally, size is much smaller and set up time much shorter compared to commercial systems currently in use in surgery rooms, making it easy to consider our system very useful for intra-operatory mapping operations.


Subject(s)
Brain/physiology , Monitoring, Physiologic/instrumentation , Animals , Disinfection , Equipment Design , Evoked Potentials/physiology , Humans , Male , Microelectrodes , Neurons/physiology , Pressure , Rats , Rats, Long-Evans
6.
Sci Rep ; 4: 5963, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25096831

ABSTRACT

A portable 16-channels microcontroller-based wireless system for a bi-directional interaction with the central nervous system is presented in this work. The device is designed to be used with freely behaving small laboratory animals and allows recording of spontaneous and evoked neural activity wirelessly transmitted and stored on a personal computer. Biphasic current stimuli with programmable duration, frequency and amplitude may be triggered in real-time on the basis of the recorded neural activity as well as by the animal behavior within a specifically designed experimental setup. An intuitive graphical user interface was developed to configure and to monitor the whole system. The system was successfully tested through bench tests and in vivo measurements on behaving rats chronically implanted with multi-channels microwire arrays.


Subject(s)
Behavior, Animal/physiology , Brain-Computer Interfaces , Remote Sensing Technology/instrumentation , Wireless Technology/instrumentation , Action Potentials/physiology , Animals , Electric Stimulation , Electrodes, Implanted , Equipment Design , Male , Rats , Rats, Long-Evans , Signal Processing, Computer-Assisted/instrumentation , Somatosensory Cortex/physiology , Somatosensory Cortex/surgery , Stereotaxic Techniques
7.
J Neurophysiol ; 107(3): 984-94, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22090461

ABSTRACT

It has been noted that the power spectrum of intracortical local field potential (LFP) often scales as 1/f(-2). It is thought that LFP mostly represents the spiking-related neuronal activity such as synaptic currents and spikes in the vicinity of the recording electrode, but no 1/f(2) scaling is detected in the spike power. Although tissue filtering or modulation of spiking activity by UP and DOWN states could account for the observed LFP scaling, there is no consensus as to how it arises. We addressed this question by recording simultaneously LFP and single neurons ("single units") from multiple sites in somatosensory cortex of anesthetized rats. Single-unit data revealed the presence of periods of high activity, presumably corresponding to the "UP" states when the neuronal membrane potential is depolarized, and periods of no activity, the putative "DOWN" states when the membrane potential is close to resting. As expected, the LFP power scaled as 1/f(2) but no such scaling was found in the power spectrum of spiking activity. Our analysis showed that 1/f(2) scaling in the LFP power spectrum was largely generated by the steplike transitions between UP and DOWN states. The shape of the LFP signal during these transitions, but not the transition timing, was crucial to obtain the observed scaling. These transitions were probably induced by synchronous changes in the membrane potential across neurons. We conclude that a 1/f(2) scaling in the LFP power indicates the presence of steplike transitions in the LFP trace and says little about the statistical properties of the associated neuronal firing.


Subject(s)
Neurons/physiology , Somatosensory Cortex/physiology , Action Potentials/physiology , Animals , Male , Membrane Potentials/physiology , Rats , Rats, Long-Evans
8.
Neuropharmacology ; 47(6): 884-91, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15527822

ABSTRACT

Glutamate extracellular accumulation is an early event in brain ischemia triggering excitotoxic neuron damage. We have investigated how to control the glutamate efflux from human cerebrocortical slices superfused in conditions simulating an acute ischemic insult (oxygen and glucose deprivation). The efflux of previously accumulated [3H]D-aspartate or endogenous glutamate increased starting 18 min after exposure to ischemia and returned almost to basal values in 6 min reperfusion with standard medium. Superfusion with Ca2+-free, EGTA (0.5 mM)-containing medium or with medium containing tetrodotoxin (TTX; 0.5 microM) inhibited the ischemia (24 min)-evoked [3H]D-aspartate efflux by about 50% and 65%, respectively. The ischemia (24 or 36 min)-evoked efflux of [3H]D-aspartate or endogenous glutamate was reduced at least 40% by the adenosine A(2A) receptor antagonist SCH 58261 (1 microM); the compound was effective when added up to 15 min after exposure to ischemia. No effect of SCH 58261 on the ischemia-evoked [3H]D-aspartate was found in Ca2+-free, EGTA-containing medium. To conclude, a significant component of the ischemia-evoked glutamate efflux in human cerebrocortical slices seems to occur by a vesicular-like mechanism. Endogenously released adenosine is likely to activate A(2A) receptors that enhance vesicular-like glutamate release during ischemia; A(2A) receptor antagonists would deserve consideration for their neuroprotective potential.


Subject(s)
Adenosine A2 Receptor Antagonists , Brain Ischemia/metabolism , Cerebral Cortex/metabolism , Glutamic Acid/metabolism , Synaptic Vesicles/metabolism , Adult , Aged , Anesthetics, Local/pharmacology , Aspartic Acid/metabolism , Calcium/physiology , Cerebral Cortex/drug effects , Female , Glucose/deficiency , Glucose/physiology , Humans , In Vitro Techniques , Male , Middle Aged , Neuroprotective Agents/pharmacology , Pyrimidines/pharmacology , Reperfusion Injury/pathology , Synaptic Vesicles/drug effects , Tetrodotoxin/pharmacology , Triazoles/pharmacology
9.
Neuropharmacology ; 45(2): 201-10, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12842126

ABSTRACT

Adenosine released during cerebral ischemia is considered to act as a neuroprotectant, possibly through the inhibition of glutamate release. The involvement of A(1) and A(2A) receptors in the control of the rise of extracellular glutamate during ischemia was investigated by monitoring the effects of selective A(1) and A(2A) receptor antagonists on ischemia-evoked glutamate release in rat cerebrocortical slices.Slices were superfused with oxygen- and glucose-deprived medium and [(3)H]D-aspartate or endogenous glutamate was measured in the superfusate fractions. Withdrawal of Ca(2+) ions or addition of tetrodotoxin more than halved the ischemia-evoked efflux of [(3)H]D-aspartate or glutamate, compatible with a vesicular-like release. The glutamate transporter inhibitor DL-TBOA prevented the ischemia-evoked efflux of [(3)H]D-aspartate by about 40%, indicating a carrier-mediated efflux. The ischemia-evoked efflux of [(3)H]D-aspartate or glutamate was increased by the A(1) receptor antagonist DPCPX. The A(2A) antagonist SCH 58261 decreased [(3)H]D-aspartate or endogenous glutamate efflux (50 and 55% maximal inhibitions; EC(50): 14.9 and 7.6 nM, respectively); the drug was effective also if added during ischemia. No effect of either the A(1) or the A(2A) receptor antagonist was found on the ischemia-evoked efflux of [(3)H]D-aspartate in Ca(2+)-free medium. Our data suggest that adenosine released during cerebral ischemia can activate inhibitory A(1) and stimulatory A(2A) receptors that down- or up-regulate the vesicular-like component of glutamate release.


Subject(s)
Brain Ischemia/metabolism , Cerebral Cortex/metabolism , Glutamic Acid/metabolism , Purinergic P1 Receptor Antagonists , Animals , Dose-Response Relationship, Drug , In Vitro Techniques , Male , Rats , Rats, Sprague-Dawley , Receptor, Adenosine A2A , Receptors, Purinergic P1/metabolism
10.
Neurochem Int ; 42(4): 283-92, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12470701

ABSTRACT

Presynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate receptors mediating hippocampal [(3)H]noradrenaline or [(3)H]serotonin release, striatal [(3)H]dopamine release and cortical [(3)H]acetylcholine release were pharmacologically characterized using several AMPA/kainate receptor antagonists. The releases of the four transmitters elicited by exposing synaptosomes to AMPA were antagonized by NBQX, indicating that they reflect AMPA/kainate receptor activation. GYKI52466 did not inhibit the AMPA-induced release of [(3)H]noradrenaline, [(3)H]dopamine or [(3)H]serotonin, while it weakly affected the AMPA-mediated release of [(3)H]acetylcholine. On the contrary, LY300164 and LY303070 were potent antagonists able to discriminate among AMPA/kainate receptor subtypes. Both compounds blocked the AMPA receptors mediating [(3)H]dopamine and [(3)H]acetylcholine release. However, LY303070, but not LY300164, inhibited the AMPA-induced release of [(3)H]noradrenaline, while the AMPA-mediated [(3)H]serotonin release was sensitive to LY300164 but not to LY303070. SYM2206 mimicked LY300164 and prevented the AMPA-induced release of [(3)H]dopamine, [(3)H]acetylcholine and [(3)H]serotonin, but not that of [(3)H]noradrenaline. NS102 failed to antagonize the AMPA-induced release of all four transmitters. LY293558 prevented the AMPA-mediated release of [(3)H]noradrenaline, [(3)H]dopamine, [(3)H]acetylcholine or [(3)H]serotonin. Differently, LY377770 did not inhibit the AMPA-mediated release of [(3)H]noradrenaline and [(3)H]acetylcholine, but it potently blocked the AMPA-induced release of [(3)H]serotonin and, less so, of [(3)H]dopamine. AMOA inhibited the AMPA-induced release of [(3)H]serotonin or [(3)H]acetylcholine, but not that of [(3)H]noradrenaline or [(3)H]dopamine. GAMS prevented the AMPA-mediated release of [(3)H]acetylcholine and, more weakly, that of [(3)H]dopamine, but it failed to inhibit the release of [(3)H]noradrenaline or [(3)H]serotonin elicited by AMPA. gamma-DGG did not affect the AMPA-mediated release of any of the four transmitters studied. In conclusion, based on the antagonist profiles obtained, the four receptors here analyzed all belong to the AMPA-preferring subclass of glutamate receptors; however, they appear to differ from each other, probably due to differences in subunit composition. The compounds LY300164, LY303070, LY377770, AMOA and GAMS may be useful to discriminate among AMPA-preferring receptor subtypes.


Subject(s)
Brain Chemistry/drug effects , Receptors, AMPA/antagonists & inhibitors , Receptors, Kainic Acid/antagonists & inhibitors , Receptors, Presynaptic/antagonists & inhibitors , Acetylcholine/metabolism , Animals , Dopamine/metabolism , Excitatory Amino Acid Antagonists/pharmacology , Male , Norepinephrine/metabolism , Presynaptic Terminals/drug effects , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Synaptic Transmission/drug effects , Synaptosomes/drug effects , Synaptosomes/metabolism
11.
Br J Pharmacol ; 136(3): 434-40, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12023946

ABSTRACT

1. The effects of adenosine A2A and A1 receptor activation on the release of glutamate were studied in rat cerebral cortex synaptosomes exposed in superfusion to adenosine receptor ligands. 2. Adenosine (0.1 microM) produced a significant potentiation of the Ca2+-dependent K+ (15 mM)-evoked [3H]-D-aspartate overflow (20.4+/-3.5%), which was blocked by A2A blocker SCH58261 (0.1 microM). At higher concentrations (10 - 1000 microM) adenosine inhibited in a DPCPX-sensitive manner the Ca2+-dependent K+-evoked [3H]-D-aspartate overflow. The inhibitory effect of adenosine at 1000 microM was significantly increased by SCH58261. This inhibition was antagonized by 1 microM DPCPX. Adenosine did not produce any effect on basal release. 3. The A2A receptor agonist CGS 21680 was ineffective on basal release, but stimulated the Ca2+-dependent K+-evoked overflow of [3H]-D-aspartate (EC50 approximately 1 pM). The effect of 0.01 nM CGS 21680 was totally sensitive to the A2A receptor antagonist SCH58261 (IC50 approximately 5 nM). 4. The A1 receptor agonist CCPA inhibited the Ca2+-dependent K+-evoked [3H]-D-aspartate overflow (EC50 approximately 20 nM). The effect of 100 nM CCPA was abolished by 100 nM of the A1 receptor antagonist DPCPX. 5. The K+ (15 mM)-evoked overflow of endogenous glutamate was enhanced by CGS 21680 (0.01 nM) and inhibited by CCPA (0.1 microM). The effect of CGS 21680 was abolished by SCH58261 (0.1 microM) and that of CCPA by DPCPX (0.1 microM). 6. It is concluded that adenosine and adenosine receptor agonists modulate glutamate release by activating inhibitory A1 and excitatory A2A receptors present on glutamatergic terminals of the rat cerebral cortex.


Subject(s)
Adenosine/analogs & derivatives , Cerebral Cortex/metabolism , Glutamic Acid/metabolism , Purinergic P1 Receptor Agonists , Synaptosomes/metabolism , Adenosine/pharmacology , Analysis of Variance , Animals , Cerebral Cortex/ultrastructure , Chromatography, High Pressure Liquid/methods , In Vitro Techniques , Male , Phenethylamines/pharmacology , Pyrimidines/pharmacology , Rats , Rats, Sprague-Dawley , Receptor, Adenosine A2A , Triazoles/pharmacology , Xanthines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...