Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
J Phys Condens Matter ; 36(20)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38330460

ABSTRACT

Nominally-pure lithium fluoride (LiF) crystals were irradiated with monochromatic hard x-rays of energy 5, 7, 9 and 12 keV at the METROLOGIE beamline of the SOLEIL synchrotron facility, in order to understand the role of the selected x-ray energy on their visible photoluminescence (PL) response, which is used for high spatial resolution 2D x-ray imaging detectors characterized by a wide dynamic range. At the energies of 7 and 12 keV the irradiations were performed at five different doses corresponding to five uniformly irradiated areas, while at 5 and 9 keV only two irradiations at two different doses were carried out. The doses were planned in a range between 4 and 1.4 × 103Gy (10.5 mJ cm-3to 3.7 J cm-3), depending on the x-ray energy. After irradiation at the energies of 7 and 12 keV, the spectrally-integrated visible PL intensity of the F2and F3+colour centres (CCs) generated in the LiF crystals, carefully measured by fluorescence microscopy under blue excitation, exhibits a linear dependence on the irradiation dose in the investigated dose range. This linear behaviour was confirmed by the optical absorption spectra of the irradiated spots, which shows a similar linear behaviour for both the F2and F3+CCs, as derived from their overlapping absorption band at around 450 nm. At the highest x-ray energy, the average concentrations of the radiation-induced F, F2and F3+CCs were also estimated. The volume distributions of F2defects in the crystals irradiated with 5 and 9 keV x-rays were reconstructed in 3D by measuring their PL signal using a confocal laser scanning microscope operating in fluorescence mode. On-going investigations are focusing on the results obtained through thisz-scanning technique to explore the potential impact of absorption effects at the excitation laser wavelength.

2.
J Microsc ; 258(2): 127-39, 2015 May.
Article in English | MEDLINE | ID: mdl-25639642

ABSTRACT

In this paper, the use of lithium fluoride (LiF) as imaging radiation detector to analyse living cells by single-shot soft X-ray contact microscopy is presented. High resolved X-ray images on LiF of cyanobacterium Leptolyngbya VRUC135, two unicellular microalgae of the genus Chlamydomonas and mouse macrophage cells (line RAW 264.7) have been obtained utilizing X-ray radiation in the water window energy range from a laser plasma source. The used method is based on loading of the samples, the cell suspension, in a special holder where they are in close contact with a LiF crystal solid-state X-ray imaging detector. After exposure and sample removal, the images stored in LiF by the soft X-ray contact microscopy technique are read by an optical microscope in fluorescence mode. The clear image of the mucilaginous sheath the structure of the filamentous Leptolyngbya and the visible nucleolus in the macrophage cells image, are noteworthiness results. The peculiarities of the used X-ray radiation and of the LiF imaging detector allow obtaining images in absorption contrast revealing the internal structures of the investigated samples at high spatial resolution. Moreover, the wide dynamic range of the LiF imaging detector contributes to obtain high-quality images. In particular, we demonstrate that this peculiar characteristic of LiF detector allows enhancing the contrast and reveal details even when they were obscured by a nonuniform stray light.


Subject(s)
Fluorides , Lithium Compounds , Microscopy/methods , Animals , Chlamydomonas/ultrastructure , Cyanobacteria/ultrastructure , Lasers , Macrophages/ultrastructure , Mice , RAW 264.7 Cells , X-Rays
3.
G Ital Med Lav Ergon ; 33(3 Suppl): 391-4, 2011.
Article in Italian | MEDLINE | ID: mdl-23393884

ABSTRACT

Lithium fluoride is a well known material used for dosimetry. In the last years it was proposed and tested also as imaging detector for X-ray microscopy. Optical microscopy represents the oldest and most used imaging technique for medicine and cell biology investigations; later other imaging techniques, including electron microscopy, were introduced. The recent technological developments in the soft X-ray field, concerning sources, optics and detectors, have been increased the interest of physicians and biologists for X-ray microscopy, mainly to obtain in vivo imaging of cells. An innovative imaging detector has been proposed and tested by researchers of C.R. ENEA Frascati, as handy, versatile and compact plate for soft X-ray imaging with very high spatial resolution, wide dynamic range, large field of view and easy to read by an optical microscope. Scientific and technological applications can be foreseen in several fields, as nanotechnologies, materials, photonics, life science and microscopy (including cell imaging, also in vivo).


Subject(s)
Fluorides , Lithium Compounds , X-Rays , Humans , Radiometry
4.
J Microsc ; 229(Pt 3): 490-5, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18331500

ABSTRACT

In this work, we report a method to observe soft X-ray radiographs at nanoscale of various kind of samples, biological and metallic, stored in a thin layer of lithium fluoride, employing scanning near-field optical microscopy with an optical resolution that reaches 50 nm. Lithium fluoride material works as a novel image detector for X-ray nano-radiographs, due to the fact that extreme ultraviolet radiation and soft X-rays efficiently produce stable point defects emitting optically stimulated visible luminescence in a thin surface layer. The bi-dimensional distribution of the so-created defects depends on the local nanostructure of the investigated sample.


Subject(s)
Fluorides , Lithium Compounds , Microscopy, Scanning Probe , Radiography , Crystallization , Microscopy, Confocal , Microscopy, Fluorescence , Nanotechnology/instrumentation , Nanotechnology/methods , Olea/ultrastructure , Pollen/ultrastructure , Radiography/instrumentation , Radiography/methods , X-Rays
5.
Opt Lett ; 31(1): 68-70, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16419880

ABSTRACT

We applied a 0.3 mJ, 1.7 ns, 46.9 nm soft-x-ray argon laser to ablate the surface of large bandgap dielectrics: CaF2 and LiF crystals. We studied the ablation versus the fluence of the soft-x-ray beam, varying the fluence in the range 0.05-3 J/cm2. Ablation thresholds of 0.06 and 0.1 J/cm2 and ablation depths of 14 and 20 nm were found for CaF2 and LiF, respectively. These results define new ablation conditions for these large bandgap dielectrics that can be of interest for the fine processing of these materials.

6.
J Nanosci Nanotechnol ; 3(6): 483-6, 2003 Dec.
Article in English | MEDLINE | ID: mdl-15002126

ABSTRACT

X-ray microradiographs of small biological objects, such as animals and plant materials at micrometric resolution, are currently performed by various methods, all of which are limited by the resolution or the dynamic range of the image detectors. Here a novel X-ray image detector is discussed, in which the previous limitations have been overcome. A film of lithium fluoride salt is used as a detector, in which the stored biological image is read by observing the optically stimulated visible luminescence of the active color centers, efficiently produced by the X-rays.


Subject(s)
Electron Probe Microanalysis/instrumentation , Fluorides/chemistry , Lithium Compounds/chemistry , Microscopy, Fluorescence/instrumentation , Nanotechnology/instrumentation , Radiography/instrumentation , Wings, Animal/diagnostic imaging , X-Ray Intensifying Screens , Animals , Crystallization/methods , Diptera , Electron Probe Microanalysis/methods , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Fluorides/radiation effects , Insecta , Lithium Compounds/radiation effects , Microscopy, Fluorescence/methods , Nanotechnology/methods , Radiography/methods , Reproducibility of Results , Sensitivity and Specificity , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...