Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 131(8): 701-712, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36102188

ABSTRACT

BACKGROUND: Amino acid metabolism is crucial for inflammatory processes during atherogenesis. The endogenous amino acid homoarginine is a robust biomarker for cardiovascular outcome and mortality with high levels being protective. However, the underlying mechanisms remain elusive. We investigated the effect of homoarginine supplementation on atherosclerotic plaque development with a particular focus on inflammation. METHODS: Female ApoE-deficient mice were supplemented with homoarginine (14 mg/L) in drinking water starting 2 weeks before and continuing throughout a 6-week period of Western-type diet feeding. Control mice received normal drinking water. Immunohistochemistry and flow cytometry were used for plaque- and immunological phenotyping. T cells were characterized using mass spectrometry-based proteomics, by functional in vitro approaches, for example, proliferation and migration/chemotaxis assays as well as by super-resolution microscopy. RESULTS: Homoarginine supplementation led to a 2-fold increase in circulating homoarginine concentrations. Homoarginine-treated mice exhibited reduced atherosclerosis in the aortic root and brachiocephalic trunk. A substantial decrease in CD3+ T cells in the atherosclerotic lesions suggested a T-cell-related effect of homoarginine supplementation, which was mainly attributed to CD4+ T cells. Macrophages, dendritic cells, and B cells were not affected. CD4+ T-cell proteomics and subsequent pathway analysis together with in vitro studies demonstrated that homoarginine profoundly modulated the spatial organization of the T-cell actin cytoskeleton and increased filopodia formation via inhibition of Myh9 (myosin heavy chain 9). Further mechanistic studies revealed an inhibition of T-cell proliferation as well as a striking impairment of the migratory capacities of T cells in response to relevant chemokines by homoarginine, all of which likely contribute to its atheroprotective effects. CONCLUSIONS: Our study unravels a novel mechanism by which the amino acid homoarginine reduces atherosclerosis, establishing that homoarginine modulates the T-cell cytoskeleton and thereby mitigates T-cell functions important during atherogenesis. These findings provide a molecular explanation for the beneficial effects of homoarginine in atherosclerotic cardiovascular disease.


Subject(s)
Atherosclerosis , Drinking Water , Plaque, Atherosclerotic , Amino Acids , Animals , Apolipoproteins E , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Female , Homoarginine/pharmacology , Mice , Myosin Heavy Chains , T-Lymphocytes/metabolism
2.
Radiat Oncol ; 15(1): 226, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32993690

ABSTRACT

BACKGROUND: COVID-19 in Italy has led to the need to reorganize hospital protocols with a significant risk of interruption to cancer treatment programs. In this report, we will focus on a management model covering the two phases of the COVID-19 emergency, namely lockdown-phase I and post-lockdown-phase II. METHODS: The following steps were taken in the two phases: workload during visits and radiotherapy planning, use of dedicated routes, measures for triage areas, management of suspected and positive COVID-19 cases, personal protective equipment, hospital environments and intra-institutional meetings and tumor board management. Due to the guidelines set out by the Ministry of Health, oncological follow-up visits were interrupted during the lockdown-phase I; consequently, we set about contacting patients by telephone, with laboratory and instrumental exams being viewed via telematics. During the post-lockdown-phase II, the oncological follow-up clinic reopened, with two shifts operating daily. RESULTS: By comparing our radiotherapy activity from March 9 to May 4 2019 with the same period in 2020 during full phase I of the COVID-19 emergency, similar results were achieved. First radiotherapy visits, Simulation Computed Tomography and Linear Accelerator treatments amounted to 123, 137 and 151 in 2019 compared with 121, 135 and 170 in 2020 respectively. There were no cases of COVID-19 positivity recorded either in patients or in healthcare professionals, who were all negative to the swab tests performed. CONCLUSION: During both phases of the COVID-19 emergency, the planned model used in our own experience guaranteed both continuity in radiotherapy treatments whilst neither reducing workload nor interrupting treatment and, as such, it ensured the safety of cancer patients, hospital environments and staff.


Subject(s)
Coronavirus Infections/prevention & control , Infection Control/methods , Neoplasms/radiotherapy , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Radiation Oncology/statistics & numerical data , Betacoronavirus , COVID-19 , Continuity of Patient Care/statistics & numerical data , Coronavirus Infections/epidemiology , Hospitals , Humans , Italy/epidemiology , Pneumonia, Viral/epidemiology , Radiation Oncology/organization & administration , SARS-CoV-2 , Workload/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL