Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Host Microbe ; 32(8): 1397-1411.e11, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39032493

ABSTRACT

Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population and how this heterogeneity affects virus evolution. Here, we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of two H3N2 strains, A/Hong Kong/45/2019 and A/Perth/16/2009, affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that were fixed in influenza variants after 2020 cause greater escape from sera from younger individuals compared with adults. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups and suggest approaches to understand how this heterogeneous selection shapes viral evolution.


Subject(s)
Antibodies, Viral , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H3N2 Subtype , Influenza, Human , Mutation , Humans , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Adult , Antibodies, Viral/immunology , Antibodies, Viral/blood , Influenza, Human/virology , Influenza, Human/immunology , Age Factors , Middle Aged , Young Adult , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antigens, Viral/genetics , Antigens, Viral/immunology , Adolescent , Evolution, Molecular , Aged , Child
2.
J R Soc Interface ; 21(212): 20230619, 2024 03.
Article in English | MEDLINE | ID: mdl-38442861

ABSTRACT

Historically Plasmodium falciparum has followed a pattern of drug resistance first appearing in low-transmission settings before spreading to high-transmission settings. Several features of low-transmission regions are hypothesized as explanations: higher chance of symptoms and treatment seeking, better treatment access, less within-host competition among clones and lower rates of recombination. Here, we test whether importation of drug-resistant parasites is more likely to lead to successful emergence and establishment in low-transmission or high-transmission periods of the same epidemiological setting, using a spatial, individual-based stochastic model of malaria and drug-resistance evolution calibrated for Burkina Faso. Upon controlling for the timing of importation of drug-resistant genotypes and examination of key model variables, we found that drug-resistant genotypes imported during the low-transmission season were (i) more susceptible to stochastic extinction due to the action of genetic drift, and (ii) more likely to lead to establishment of drug resistance when parasites are able to survive early stochastic loss due to drift. This implies that rare importation events are more likely to lead to establishment if they occur during a high-transmission season, but that constant importation (e.g. neighbouring countries with high levels of resistance) may produce a greater risk during low-transmission periods.


Subject(s)
Genetic Drift , Plasmodium falciparum , Plasmodium falciparum/genetics , Seasons , Clone Cells , Genotype
3.
Nat Commun ; 15(1): 1390, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360803

ABSTRACT

Delaying and slowing antimalarial drug resistance evolution is a priority for malaria-endemic countries. Until novel therapies become available, the mainstay of antimalarial treatment will continue to be artemisinin-based combination therapy (ACT). Deployment of different ACTs can be optimized to minimize evolutionary pressure for drug resistance by deploying them as a set of co-equal multiple first-line therapies (MFT) rather than rotating therapies in and out of use. Here, we consider one potential detriment of MFT policies, namely, that the simultaneous deployment of multiple ACTs could drive the evolution of different resistance alleles concurrently and that these resistance alleles could then be brought together by recombination into double-resistant or triple-resistant parasites. Using an individual-based model, we compare MFT and cycling policies in malaria transmission settings ranging from 0.1% to 50% prevalence. We define a total risk measure for multi-drug resistance (MDR) by summing the area under the genotype-frequency curves (AUC) of double- and triple-resistant genotypes. When prevalence ≥ 1%, total MDR risk ranges from statistically similar to 80% lower under MFT policies than under cycling policies, irrespective of whether resistance is imported or emerges de novo. At 0.1% prevalence, there is little statistical difference in MDR risk between MFT and cycling.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Folic Acid Antagonists/therapeutic use , Genotype , Malaria/parasitology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics
4.
medRxiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38370625

ABSTRACT

Influenza virus seasonality, synchronicity, and vaccine supply differ substantially between temperate and tropical settings, and optimal vaccination strategy may differ on this basis. Most national vaccine recommendations focus on high-risk groups, elderly populations, and healthcare workers despite previous analyses demonstrating broad benefits to vaccinating younger high-contact age groups. Here, we parameterized an age-structured non-seasonal asynchronous epidemiological model of influenza virus transmission for a tropical low-income setting. We evaluated timing and age allocation of vaccines across vaccine supplies ranging from 10% to 90% using decade-based age groups. Year-round vaccination was beneficial when comparing to vaccination strategies focused on a particular time of year. When targeting a single age-group for vaccine prioritization, maximum vaccine allocation to the 10-19 high-contact age group minimized annual influenza mortality for all but one vaccine supply. When evaluating across all possible age allocations, optimal strategies always allocated a plurality of vaccines to school-age children (10-19). The converse however was not true as not all strategies allocating a plurality to children aged 10-19 minimized mortality. Allocating a high proportion of vaccine supply to the 10-19 age group is necessary but not sufficient to minimize annual mortality as distribution of remaining vaccine doses to other age groups also needs to be optimized. Strategies focusing on indirect benefits (vaccinating children) showed higher variance in mortality outcomes than strategies focusing on direct benefits (vaccinating the elderly). However, the indirect benefit approaches showed lower mean mortality and lower minimum mortality than vaccination focused on the elderly.

5.
bioRxiv ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38168237

ABSTRACT

Human influenza virus evolves to escape neutralization by polyclonal antibodies. However, we have a limited understanding of how the antigenic effects of viral mutations vary across the human population, and how this heterogeneity affects virus evolution. Here we use deep mutational scanning to map how mutations to the hemagglutinin (HA) proteins of the A/Hong Kong/45/2019 (H3N2) and A/Perth/16/2009 (H3N2) strains affect neutralization by serum from individuals of a variety of ages. The effects of HA mutations on serum neutralization differ across age groups in ways that can be partially rationalized in terms of exposure histories. Mutations that fixed in influenza variants after 2020 cause the greatest escape from sera from younger individuals. Overall, these results demonstrate that influenza faces distinct antigenic selection regimes from different age groups, and suggest approaches to understand how this heterogeneous selection shapes viral evolution.

6.
Front Epidemiol ; 2: 1041896, 2022.
Article in English | MEDLINE | ID: mdl-38455307

ABSTRACT

Treatment of symptomatic malaria became a routine component of the clinical and public health response to malaria after the second world war. However, all antimalarial drugs deployed against malaria eventually generated enough drug resistance that they had to be removed from use. Chloroquine, sulfadoxine-pyrimethamine, and mefloquine are well known examples of antimalarial drugs to which resistance did and still does ready evolve. Artemisinin-based combination therapies (ACTs) are currently facing the same challenge as artemisinin resistance is widespread in Southeast Asia and emerging in Africa. Here, I review some aspects of drug-resistance management in malaria that influence the strength of selective pressure on drug-resistant malaria parasites, as well as an approach we can take in the future to avoid repeating the common mistake of deploying a new drug and waiting for drug resistance and treatment failure to arrive. A desirable goal of drug-resistance management is to reduce selection pressure without reducing the overall percentage of patients that are treated. This can be achieved by distributing multiple first-line therapies (MFT) simultaneously in the population for the treatment of uncomplicated falciparum malaria, thereby keeping treatment levels high but the overall selection pressure exerted by each individual therapy low. I review the primary reasons that make MFT a preferred resistance management option in many malaria-endemic settings, and I describe two exceptions where caution and additional analyses may be warranted before deploying MFT. MFT has shown to be feasible in practice in many endemic settings. The continual improvement and increased coverage of genomic surveillance in malaria may allow countries to implement custom MFT strategies based on their current drug-resistance profiles.

SELECTION OF CITATIONS
SEARCH DETAIL