Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 900: 165871, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37517733

ABSTRACT

Nowadays, there is still a scientific knowledge gap regarding occurrence and distribution of organic contaminants in remote areas. In this study, we have monitored for the first time the presence of a wide range of persistent and emerging organic pollutants in the Atacama Desert coastal region (Chile), a key area in the Humboldt Current System. Nonylphenols (NPs), polycyclic aromatic hydrocarbons (PAHs), pesticides, UV filters, synthetic fragrances, and organophosphate flame retardants (OPFRs) were determined in sediments along the >500 km length Atacama coastline. NPs, well-known endocrine disruptors, were the predominant pollutants in the area (up to 333.5 ng g-1 dw). We identified inputs of different classes of contaminants from anthropogenic activities such as mining, agriculture, direct effluent discharges, harbors, energy plants, recreational activities, and tourism occurring along the coastline. Environmental risk assessment through calculation of hazard quotients (HQs) showed a high ecological risk level for NPs in the three provinces of Atacama (HQ >1). In the case of PAHs, (pyrene, benz(a)anthracene, chrysene, acenaphthene, naphthalene and benzo(a)pyrene) HQ >1 was showed in Copiapó province. Furthermore, estradiol equivalent concentrations (EEQ) were determined to estimate estrogenicity of the environmental sediment samples. The maximum EEQ value was for NPs in H1 (Carrizal Bajo wetland), province of Huasco, where the highest concentration of NPs was found. The sampling point H1 is a particular location because it is the exit of a wetland and a tourist point used as a beach. The potential risks of anthropogenic chemical substances impacting remote regions such as the one studied here highlight the need of expand monitoring efforts worldwide for a better assessment of the global pollution status.

2.
PLoS One ; 17(10): e0275841, 2022.
Article in English | MEDLINE | ID: mdl-36240216

ABSTRACT

Learning techniques involve unraveling regression structures, which aim to analyze in a probabilistic frame the associations across variables of interest. Thus, analyzing fraction and/or proportion data may not be adequate with standard regression procedures, since the linear regression models generally assume that the dependent (outcome) variable is normally distributed. In this manner, we propose a statistical model called unit-Lindley regression model, for the purpose of Statistical Process Control (SPC). As a result, a new control chart tool was proposed, which targets the water monitoring dynamic, as well as the monitoring of relative humidity, per minute, of Copiapó city, located in Atacama Desert (one of the driest non-polar places on Earth), north of Chile. Our results show that variables such as wind speed, 24-hour temperature variation, and solar radiation are useful to describe the amount of relative humidity in the air. Additionally, Information Visualization (InfoVis) tools help to understand the time seasonality of the water particle phenomenon of the region in near real-time analysis. The developed methodology also helps to label unusual events, such as Camanchaca, and other water monitoring-related events.


Subject(s)
Water , Weather , Humidity , Temperature , Wind
3.
Chemosphere ; 288(Pt 2): 132519, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34637862

ABSTRACT

Ocean contamination mostly comes from anthropogenic contamination in watercourses. However, what happens in desert areas where watercourses are few or nonexistent? Are these coastal areas exempt from contamination? Do the remote locations of desert areas enable pristine coastal areas? Atacama is widely known for its desert aridity and mining resources; however, human impacts in its coastal areas have not been widely studied. Coastal zone uses of this region of Chile were analyzed per province in relation to the population settlements and economic activities on the coastal edge. This study includes a review of the contamination in this desert coastal area in relation to the territorial organization, activities, and land uses. The results determined that most of the coastal edge was used for fishing and aquaculture (52%) and for conservation and protected areas (39%). However, 2% of the coastal edge was susceptible to conflicts due to shared uses. A strong lack of scientific research was detected despite environmental interest (Humboldt Current, diversity hot spots, desert blooming, algae kelps, protected areas, etc.) and economic development (impact of mining, agriculture and tourism) in the area. Most studies focused on metal concentrations in aquatic environments in the north part of the region. Studies on emerging contaminants have not been carried out in the area despite intense human settlement.


Subject(s)
Economic Development , Anthropogenic Effects , Aquaculture , Chile , Conservation of Natural Resources , Desert Climate , Humans , Hunting
4.
Heliyon ; 7(8): e07689, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34401575

ABSTRACT

This study was designed to assess total petroleum hydrocarbon (THP) concentrations in the surface water and sediment sampled from Woji Creek and to assess potential ecological and human health risk due to petroleum hydrocarbons along the creek. Physicochemical parameters [pH, temperature (T), electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS)] were in-situ measured from sediment and surface water; hydrological parameters (width, depth and volume) were used to calculate the flow rate (discharge) at different stations of the creek. Trend of TPH in the surface water samples along the creek were as follows: St4 (3.639 ± 1.121 mg/L) > St3 (2.449 ± 0.623 mg/L) > St1 (1.457 ± 0.244 mg/L) > St2 (1.069 ± 0.228 mg/L) > St5 (1.010 ± 0.120 mg/L) Trend of TPH concentration across the creek was as follows: St1 - 8.758 ± 0.697 mg/kg > St3 - 7.675 ± 0.541 mg/kg > St5 - 5.515 ± 0.401 mg/kg > St4 - 5.075 ± 0.363 mg/kg > St2 - 3.162 ± 0.307 mg/kg. Diagnostic indices indicate that the hydrocarbon in the creek was from petrogenic source. Estimation of ecological risk indicated risk in the surface water but not in the sediment. However, human health risk assessment indicated no risk due to human ingestion of the sediment or surface water.

5.
Mar Pollut Bull ; 171: 112735, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34303056

ABSTRACT

The increasing CO2-concentrations in the atmosphere promote ocean acidification. Seawater chemistry changes interact with contaminants, such as illicit drugs in the coastal zones. This work evaluates impacts of pH decrease and crack-cocaine exposure on the commercial mussel Perna perna through biomarker responses (lysosomal membrane stability, lipid peroxidation, and DNA strand breaks). The organisms were exposed to different crack-cocaine concentrations (0.5, 5.0, and 50 µg L-1) combined with different pH values (8.3, 8.0, 7.5, 7.0, 6.5, and 6.0) for 96 h. Crack-cocaine in the different acidification scenarios triggered cyto-genotoxicity, which affected the overall health of mussels exposed to cocaine environmentally relevant concentration. This study produced the first data on biomarker responses associated with CO2-induced acidification and illicit drugs (crack-cocaine) in marine organisms.


Subject(s)
Crack Cocaine , Illicit Drugs , Perna , Water Pollutants, Chemical , Animals , Carbon Dioxide/toxicity , Hydrogen-Ion Concentration , Seawater , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Chemosphere ; 264(Pt 2): 128552, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33065323

ABSTRACT

Carbon capture and storage (CCS) is one of the most promising mitigation strategies for reducing the emissions of carbon dioxide (CO2) to the atmosphere and may substantially help to decelerate global warming. There is an increasing demand for CCS sites. Nevertheless, there is a lack of knowledge of the environmental risk associated with potential leakage of CO2 from the storage sites; and even more, what happens when the seepage stops. Can the environment return to the initial equilibrium? Potential effects on native macrofauna were studied under a scenario of a 50-day CO2 leakage, and the subsequent leak closure. To accomplish the objective, Trondheim Fjord sediments and clams were exposed to an acidified environment (pH 6.9) at 29 atm for 7 weeks followed by a 14-day recovery at normal seawater conditions (pH 8.0, 29 atm). Growth and survival of clams exposed to pressure (29 atm) and reduced pH (6.9) did not significantly differ from control clams kept at 1 atm in natural seawater. Furthermore, bioaccumulation of elements in the soft tissue of clams did not register significant variations for most of the analysed elements (Cd, Cr, Pb, and Ti), while other elements (As, Cu, Fe, Ni) had decreasing concentrations in tissues under acidified conditions in contrast to Na and Mg, which registered an uptake (Ku) of 111 and 9.92 µg g-1dw d-1, respectively. This Ku may be altered due to the stress induced by acidification; and the element concentration being released from sediments was not highly affected at that pH. Therefore, a 1 unit drop in pH at the seafloor for several weeks does not appear to pose a risk for the clams.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Carbon Dioxide/analysis , Climate Change , Geologic Sediments , Hydrogen-Ion Concentration , Seawater , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
7.
Mar Environ Res ; 160: 105050, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32907742

ABSTRACT

Carbon capture and storage sites in Barents Sea shelf are currently in progress as part of climate change mitigation activities. However environmental impacts of a possible CO2 seepage on bacterial community are lacking knowledge. This work addressed potential consequences on bacterial communities from Snøvit region in Barents Sea sediments. Long-term experiment (92 days) was carried out mimicking realistic conditions of pressure (∼30 bars) using the unique hyperbaric chamber (Karl Erik TiTank). The experiment was divided in three stages: i) 21 days of no CO2, ii) 50 days of simulation of carbon dioxide leakage (depletion of pH to 7.0) and iii) 14 days emulating a leakage cessation. Results suggested that bacterial communities can adapt to a CO2 leakage in short term. However, bacteria showed negative effects in terms of activity, community structure, and number of cells after long term CO2 exposure. After CO2 leakage cessation, bacterial communities did not show a significant recovery. These findings highlighted that, even though marine bacteria showed adaptation to the new conditions (acidified environment), in case of a small but continuous CO2 leakage marine bacteria might not be recovered upon pre-exposure status.


Subject(s)
Bacteria , Carbon Dioxide , Geologic Sediments , Oceans and Seas
8.
Sci Total Environ ; 650(Pt 2): 1996-2003, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30290342

ABSTRACT

This study assesses the sediment quality of the Guadalquivir River watercourse between the Alcalá del Río dam and the city of Seville. The main objective of this work is to address sediment quality in the area using an integrative approach that links sediment contamination and toxicity using the Asiatic clam (Corbicula fluminea) under field conditions. This is the first study conducted in the area that use of a battery of biomarkers from exposure (GST, GPx) to adverse biological effect (DNA and histopathological damage) to identify the contamination adverse effects in a river area affected by a cocktail of different anthropogenic activities (urban, industrial, agricultural, etc.). The sediment quality characterized in the area shows a significant biological stress related to metal(loid)s at station located in Alcalá del Río in the river upper part of the studied area, being this stress toxic when approaching the city of Seville. The sediments located nearby this city showed toxicity by means of positive values in the biomarkers of effects measured in the caged clams and related to contaminants with an industrial and urban discharge origins. These results have shown the useful and strength of the biomarker approach used in this study that combines biomarker responses from exposure to effects and allows identifying the contamination adverse effects by means of using caging individuals of the Asian clam. It has been proved in the different experiments how once the exposure biomarkers reach a maximum value of their system the detoxification ability of the organisms is collapsed and then the biomarkers of effect are measured significantly in the different tissues. The use of field surveys using tolerant specie such as the Asian clam is recommendable to determine sediment quality under an integrative point of view as here reported.


Subject(s)
Corbicula/enzymology , Environmental Monitoring , Geologic Sediments/analysis , Metalloids/analysis , Metals/analysis , Water Pollutants, Chemical/analysis , Animals , Biomarkers/metabolism , DNA Damage , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Metalloids/metabolism , Metals/metabolism , Spain , Water Quality
9.
Chemosphere ; 219: 695-703, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30557726

ABSTRACT

A passive treatment plant, located in the Iberian Pyrite Belt (Huelva, Southwest Spain), was designed for acid mine drainage remediation. Since its installation, the improvement of water quality in terms of hydrochemical composition has been demonstrated successfully. However, according to the Water Framework Directive, the treated effluent must have ecological values for potential living. The freshwater clam Corbicula fluminea was chosen to carry out bioassessments (survival, biomarker responses, and metal bioaccumulation in soft tissue) with effluents from the mining site, as well as, products from the passive treatment plant in order to determine the level of quality of that water from the biological point of view in toxicity tests. Results discarded mortality as endpoint for biomonitoring purposes. Only the lipid peroxidation of the cell membrane evidenced significant responses, even in correlation with the pollution degree of each effluent. Regarding bioaccumulation, some elements displayed a strong relationship (Fe, Cu, Co, and Zn) between concentrations in the environment and in the tissue. As final conclusion, the usage of the Asian clam was validated as biomonitor tool in short term exposure to acid mine drainage, and, as early warning responses (72 h), the chosen parameters would be lipid peroxidation and bioaccumulation of a specific set of elements (Fe, Cu, Co, Zn). Ecological water quality levels reached by the passive treatment plant were in agreement with the efficiency of hydrochemical improvements.


Subject(s)
Corbicula/chemistry , Environmental Monitoring/methods , Environmental Restoration and Remediation , Mining , Water Quality , Acids/analysis , Animals , Bivalvia/chemistry , Fresh Water/chemistry , Metals, Heavy/analysis , Spain , Water Pollutants, Chemical/analysis
10.
Environ Pollut ; 242(Pt B): 1659-1668, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30064871

ABSTRACT

The environmental quality of an acid mine drainage polluted river (Odiel River) in the Iberian Pyrite Belt (SW Spain) was assessed by combining analyses of biomarkers (DNA strand breaks, LPO, EROD, GST, GR, GPx) in freshwater clams (Corbicula fluminea) exposed during 14 days and correlated with metal(loid) environmental concentrations. Results pointed that enzymatic systems are activated to combat oxidative stress in just 24 h. Along exposure, there were homeostatic regulations with the glutathione activity that influenced in lipid peroxidation oscillations, provoking significant DNA strand damage after 14 exposure days. EROD activity showed no changes throughout the exposure period. The Asian clam displayed balance biomarkers of exposure-antioxidant activity under non-stressfully environments; meanwhile, when was introduced into acid polymetallic environments, such as the acid mine drainage, its enzymatic activity was displaced towards biomarkers of effect and the corresponding antioxidant activity.


Subject(s)
Corbicula/metabolism , Industrial Waste , Metals , Water Pollutants, Chemical , Acids , Animals , Biomarkers/metabolism , Cytochrome P-450 CYP1A1/metabolism , DNA Damage , Environmental Monitoring/methods , Environmental Pollution , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Lipid Peroxidation , Mining , Rivers , Spain
11.
Mar Pollut Bull ; 131(Pt A): 611-619, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29886988

ABSTRACT

Carbon-capture and storage is considered to be a potential mitigation option for climate change. However, accidental leaks of CO2 can occur, resulting in changes in ocean chemistry such as acidification and metal mobilization. Laboratory experiments were performed to provide data on the effects of CO2-related acidification on the chemical fractionation of metal(loid)s in marine-contaminated sediments using sequential extraction procedures. The results showed that sediments from Huelva estuary registered concentrations of arsenic, copper, lead, and zinc that surpass the probable biological effect level established by international protocols. Zinc had the greatest proportion in the most mobile fraction of the sediment. Metals in this fraction represent an environmental risk because they are weakly bound to sediment, and therefore more likely to migrate to the water column. Indeed, the concentration of this metal was lower in the most acidified scenarios when compared to control pH, indicating probable zinc mobilization from the sediment to the seawater.


Subject(s)
Carbon Dioxide/chemistry , Geologic Sediments/chemistry , Metals/chemistry , Water Pollutants, Chemical/chemistry , Acids/chemistry , Carbon/chemistry , Chemical Fractionation , Estuaries , Geologic Sediments/analysis , Hydrogen-Ion Concentration , Metals/analysis , Risk Assessment , Seawater/chemistry , Spain , Water Pollutants, Chemical/analysis
12.
Environ Sci Pollut Res Int ; 25(18): 18204-18212, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29797192

ABSTRACT

Water fog composition was investigated at a fog harvesting installation in the coast of Atacama (North Chile). Chañaral is historically affected by mining contamination discharges. Hydro-chemical characterization of fog water from top of the mountain (where capture installation is located) and at the bottom of the mountain (after vertical transportation where an aquaponic system is located) revealed many compositional differences that compromise the use of water. High acidity and high concentrations in Cu and As in water collected on top of the mountain were found; meanwhile, acidity and Cu decreased, and As levels overpassed the drinking water standards after the vertical transportation. Collected data was assessed according to national and international regulatory standards, neutralization factors (NF), sodium adsorption ratio (SAR), and ion ratios to determine origin of contamination and suitability of destined for human consumption, irrigation, or aquaculture purposes.


Subject(s)
Conservation of Water Resources/methods , Water Quality/standards , Water Resources/supply & distribution , Weather , Chile , Desert Climate , Humans , Mining
13.
Environ Geochem Health ; 40(4): 1465-1480, 2018 Aug.
Article in English | MEDLINE | ID: mdl-28612322

ABSTRACT

The Ribeira de Iguape River (Southeast Brazil) is metal contaminated by mining activities. Despite it has been cataloged as "in via of restoration" by the literature, this basin is still a sink of pollution in some segments of the fluvial system. This study aimed to assess the sediment quality in the lower part of the RIR basin. The employed approach was based on biological responses of the freshwater clam Corbicula fluminea after 7-day exposure bioassays using as the reference site the Perequê Ecological Park. Toxic responses (burial activity and lethality) and biochemical biomarkers (GST, GR, GPx, LPO, MTs, AChE and DNA damage) were evaluated and then integrated with metal bioavailability and chemical concentrations to address the sediment quality in the area through the weight-of-evidence approach. A multivariate analysis identified linkages between biological responses and contamination. Results pointed that, despite being below the benchmarks of the US Environmental Protection Agency, there is slight metal contamination in the lower part of the basin which induces oxidative stress in C. fluminea; other toxic responses were sometimes attributed to As and Cr bioaccumulation. The sediment quality values (TEL-PEL values in mg/kg) were calculated for the current study for As (0.63-1.31), Cr (3.5-11.05), Cs (1.0-1.17), Cu (6.32-7.32), Ni (6.78-7.46), Ti (42.0-215), V (1.77-8.00). By comparison with other international guidelines, the sediment quality of the lower basin of the Vale de Ribeira does not identify a significant environmental risk.


Subject(s)
Geologic Sediments/chemistry , Mining , Water Pollutants, Chemical/metabolism , Animals , Biomarkers/metabolism , Bivalvia/enzymology , Bivalvia/metabolism , Brazil , Fresh Water , Oxidative Stress , Water Pollutants, Chemical/toxicity
14.
J Hazard Mater ; 338: 466-471, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28609733

ABSTRACT

Lanthanide series have been used as a record of the water-rock interaction and work as a tool for identifying impacts of acid mine drainage (lixiviate residue derived from sulphide oxidation). The application of North-American Shale Composite-normalized rare earth elements patterns to these minority elements allows determining the origin of the contamination. In the current study, geochemical patterns were applied to rare earth elements bioaccumulated in the soft tissue of the freshwater clam Corbicula fluminea after exposure to different acid mine drainage contaminated environments. Results show significant bioaccumulation of rare earth elements in soft tissue of the clam after 14 days of exposure to acid mine drainage contaminated sediment (ΣREE=1.3-8µg/gdw). Furthermore, it was possible to biomonitor different degrees of contamination based on rare earth elements in tissue. The pattern of this type of contamination describes a particular curve characterized by an enrichment in the middle rare earth elements; a homologous pattern (EMREE=0.90) has also been observed when applied NASC normalization in clam tissues. Results of lanthanides found in clams were contrasted with the paucity of toxicity studies, determining risk caused by light rare earth elements in the Odiel River close to the Estuary. The current study purposes the use of clam as an innovative "bio-tool" for the biogeochemical monitoring of pollution inputs that determines the acid mine drainage networks affection.


Subject(s)
Acids/analysis , Corbicula/metabolism , Environmental Monitoring/methods , Metals, Rare Earth/metabolism , Mining , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Animals , Fresh Water , Metals, Rare Earth/pharmacokinetics , Tissue Distribution , Water Pollutants, Chemical/pharmacokinetics
15.
Environ Monit Assess ; 189(6): 245, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28462477

ABSTRACT

The sediment quality of Ribeira de Iguape River is affected by former Pb extraction mining. Some studies affirm the restoration status of the basin, however, mobility of metals and its associated risk is still questioned. This study integrates the metal concentrations in the lower part of the basin with different contamination source to determine the existence of risks associated with the mobile fractions of the geochemical matrix. Despite concentrations of metals were low and the environmental risk factor values were negative, our results indicated that As, Mn, Pb, and V were present in the most labile forms. The multivariate analysis conducted using metal concentrations, environmental risk factor values and speciation suggested that any risk would be associated with the labile fractions of the analyzed elements, especially for Pb. The station from Registro was stressed by Co, Pb and Zn; with Pb under the reactive fraction that could be associated with high mobility and potential bioavailability.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Brazil , Chemical Fractionation , Geologic Sediments/analysis , Mining , Rivers
16.
Environ Sci Pollut Res Int ; 23(22): 22957-22967, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27578093

ABSTRACT

Streams and rivers strongly affected by acid mine drainage (AMD) have legal vacuum in terms of assessing the water toxicity, since the use of conventional environmental quality biomarkers is not possible due to the absence of macroinvertebrate organisms. The Asian clam Corbicula fluminea has been widely used as a biomonitor of metal contamination by AMD in freshwater systems. However, these clams are considered an invasive species in Spain and the transplantation in the field study is not allowed by the Environmental Protection Agency. To evaluate the use of the freshwater bivalve C. fluminea as a potential biomonitor for sediments contaminated by AMD, the metal bioavailability and toxicity were investigated in laboratory by exposure of clams to polluted sediments for 14 days. The studied sediments were classified as slightly contaminated with As, Cr, and Ni; moderately contaminated with Co; considerably contaminated with Pb; and heavily contaminated with Cd, Zn, and specially Cu, being reported as very toxic to Microtox. On the fourth day of the exposure, the clams exhibited an increase in concentration of Ga, Ba, Sb, and Bi (more than 100 %), followed by Co, Ni, and Pb (more than 60 %). After the fourth day, a decrease in concentration was observed for almost all metals studied except Ni. An allometric function was used to determine the relationship between the increases in metal concentration in soft tissue and the increasing bioavailable metal concentrations in sediments.


Subject(s)
Corbicula/drug effects , Geologic Sediments/chemistry , Metals/metabolism , Metals/pharmacology , Mining , Acids , Animals , Biological Availability , Fresh Water , Water Pollutants, Chemical/analysis
17.
Ecotoxicol Environ Saf ; 133: 243-51, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27472029

ABSTRACT

The fluvial systems of the Iberian Pyrite Belt (SW Iberian Peninsula) are affected by acid mine drainage (a lixiviate residue product of mining activities derived from sulfide oxidation). The high acidity and high concentrations of sulfates and metal(loid)s are the main causes of the environmental degradation of the Odiel River basin. The use of weight of evidence approach in areas of the Odiel River basin implies the integration of different lines of evidence (chemistry, toxicity and bioaccumulation) using the freshwater clam Corbicula fluminea as target species. The integration of the results from the application of the different lines of evidence showed that the index of pollution was higher downvalley (Ptriad=12,312), moderate after mining effluent discharges (Ptriad=13.9) and very low where the Odiel River sources (Ptriad=6.31). The multivariate analysis indicated that variables and chemicals were associated with geochemical matrix and background levels (% of fines and toxic metal(loid) concentrations), toxic effects, and metal(loid) bioaccumulation reflecting the geographical distribution of the contamination towards the estuary. Metal(loid) thresholds were calculated for the study area as site-specific values of interim freshwater sediment quality values: As≥171; Cd≥0.48; Co≥8.82; Cr≥38.4; Cu≥451; Ni≥18.4; Pb≥377; Sb≥17.7; Zn≥221mg/kg of freshwater fluvial dry sediment. These results revealed the possibility of using the TEL values proposed by the USEPA and the NOAA for sediments from this site, and proposed lower PEL values for the Iberian Pyrite Belt as result of toxicity effects found in the Asian clam due to the combination of extreme acidity and high metal(loid) concentrations.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Water Pollutants, Chemical/toxicity , Acids , Animals , Body Weight , Corbicula , Estuaries , Fresh Water , Iron , Mining , Rivers/chemistry , Spain , Sulfides
18.
Arch Environ Contam Toxicol ; 71(2): 278-85, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27090524

ABSTRACT

This study evaluated the alteration of the enzymatic system of the freshwater Asian clam exposed to different copper concentrations. Individuals of Corbicula fluminea were exposed to different concentrations of dissolved Cu (0.5, 1, and 2 mg L(-1)) for 7 days, then, biomarkers of oxidative stress (GST, GPx, GR), exposure (MTs), effect (AChE), and damage (LPO, DNA strand breaks) were quantified. Results showed positive correlations between dissolved metal concentrations and GPx, MTs, and DNA damage, and negative correlation with GST and AChE. In contrast, no clear trend was found for GR and LPO. In general, the established mechanisms of protection might have a beneficial effect on the decreasing ROS attack on membrane and the activation of the metallothioneins. Integrated biomarker analysis revealed that the measured alterations are well correlated with the levels of increasing dissolved copper concentrations in water, demonstrating the effectiveness of this organism for biomonitoring approach purposes.


Subject(s)
Copper/toxicity , Corbicula/metabolism , Hazardous Substances/toxicity , Toxicity Tests , Animals , Biomarkers/metabolism , Corbicula/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...