Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
JOR Spine ; 7(1): e1313, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38283179

ABSTRACT

Introduction: Therapeutic interventions for intervertebral disc herniation remain scarce due to the inability of endogenous annulus fibrosus (AF) cells to respond to injury and drive tissue regeneration. Unlike other orthopedic tissues, such as cartilage, delivery of exogenous cells to the site of annular injury remains underdeveloped, largely due to a lack of an ideal cell source and the invasive nature of cell isolation. Human induced pluripotent stem cells (iPSCs) can be differentiated to specific cell fates using biochemical factors and are, therefore, an invaluable tool for cell therapy approaches. While differentiation protocols have been developed for cartilage and fibrous connective tissues (e.g., tendon), the signals that regulate the induction and differentiation of human iPSCs toward the AF fate remain unknown. Methods: iPSC-derived sclerotome cells were treated with various combinations of developmental signals including transforming growth factor beta 3 (TGF-ß3), connective tissue growth factor (CTGF), platelet derived growth factor BB (PDGF-BB), insulin-like growth factor 1 (IGF-1), or the Hedgehog pathway activator, Purmorphamine, and gene expression changes in major AF-associated ECM genes were assessed. The top performing combination treatments were further validated by using three distinct iPSC lines and by assessing the production of upregulated ECM proteins of interest. To conduct a broader analysis of the transcriptomic shifts elicited by each factor combination, and to compare genetic profiles of treated cells to mature human AF cells, a 96.96 Fluidigm gene expression array was applied, and principal component analysis was employed to identify the transcriptional signatures of each cell population and treatment group in comparison to native AF cells. Results: TGF-ß3, in combination with PDGF-BB, CTGF, or IGF-1, induced an upregulation of key AF ECM genes in iPSC-derived sclerotome cells. In particular, treatment with a combination of TGF-ß3 with PDGF-BB for 14 days significantly increased gene expression of collagen II and aggrecan and increased protein deposition of collagen I and elastin compared to other treatment groups. Assessment of genes uniquely highly expressed by AF cells or SCL cells, respectively, revealed a shift toward the genetic profile of AF cells with the addition of TGF-ß3 and PDGF-BB for 14 days. Discussion: These findings represent an initial approach to guide human induced pluripotent stem cells toward an AF-like fate for cellular delivery strategies.

2.
Osteoarthritis Cartilage ; 32(1): 41-51, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37866546

ABSTRACT

OBJECTIVES: Fibroses are disorders linked to persistence of myofibroblasts due to biochemical (e.g., Transforming growth factor-ß) and biophysical cues (e.g., a stiff microenvironment). In the context of osteoarthritis, fibrotic changes in the joint-lining synovium have been linked with disease progression. The objective of this study was to probe synovial fibroblast mechanobiology and how essential functions (i.e., lubrication) are altered in fibrotic environments. DESIGN: Both ex vivo and in vitro synovium models were assessed for fibrotic and lubrication biomarkers to better understand the role of mechanobiology and lubrication. Additionally, in vitro, work on small molecules targeting mechanobiology was assessed. RESULTS: Our results indicated that modulating mechanobiology could rescue the fibrotic phenotype instigated by stiffening microenvironment that resulted in altered lubricant expression. A small molecule therapeutic, fasudil, blocked ROCK-mediated contractility and this inhibition of the fibrotic mechano-response of synovial fibroblasts restored proper lubrication function, providing insight into mechanisms of disease progression as well as a new avenue for therapeutic development. CONCLUSION: This study identifies synovial fibrosis as a condition that potentially has joint-wide deficits through inhibiting lubrication. Additionally, modulating mechanobiology (i.e., ROCK-mediated contractility) may pose a potential target for small molecule therapies that can be delivered to the joint space. CLASSIFICATION: Applied Biological Sciences.


Subject(s)
Synovial Membrane , Humans , Lubrication , Fibrosis , Synovial Membrane/metabolism , Biophysics , Disease Progression
3.
Sci Rep ; 13(1): 21759, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38066073

ABSTRACT

Over the past decade, automation of digital image analysis has become commonplace in both research and clinical settings. Spurred by recent advances in artificial intelligence and machine learning (AI/ML), tissue sub-compartments and cellular phenotypes within those compartments can be identified with higher throughput and accuracy than ever before. Recently, immune checkpoints have emerged as potential targets for auto-immune diseases. As such, spatial identification of these proteins along with immune cell markers (e.g., CD3+/LAG3+ T-cells) is a crucial step in understanding the potential and/or efficacy of such treatments. Here, we describe a semi-automated imaging and analysis pipeline that identifies CD3+/LAG3+ cells in colorectal tissue sub-compartments. While chromogenic staining has been a clinical mainstay and the resulting brightfield images have been utilized in AI/ML approaches in the past, there are associated drawbacks in phenotyping algorithms that can be overcome by fluorescence imaging. To address these tradeoffs, we developed an analysis pipeline combining the strengths of brightfield and fluorescence images. In this assay, immunofluorescence imaging was conducted to identify phenotypes followed by coverslip removal and hematoxylin and eosin staining of the same section to inform an AI/ML tissue segmentation algorithm. This assay proved to be robust in both tissue segmentation and phenotyping, was compatible with automated workflows, and revealed presence of LAG3+ T-cells in ulcerative colitis biopsies with spatial context preserved.


Subject(s)
Artificial Intelligence , Colitis, Ulcerative , Humans , Algorithms , Fluorescent Antibody Technique , Machine Learning , Biomarkers
4.
Sci Transl Med ; 15(722): eadf1690, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37967202

ABSTRACT

Conventional microdiscectomy treatment for intervertebral disc herniation alleviates pain but does not repair the annulus fibrosus, resulting in a high incidence of recurrent herniation and persistent dysfunction. The lack of repair and the acute inflammation that arise after injury can further compromise the disc and result in disc-wide degeneration in the long term. To address this clinical need, we developed tension-activated repair patches (TARPs) for annulus fibrosus repair and local delivery of the anti-inflammatory factor anakinra (a recombinant interleukin-1 receptor antagonist). TARPs transmit physiologic strain to mechanically activated microcapsules embedded within the patch, which release encapsulated bioactive molecules in direct response to spinal loading. Mechanically activated microcapsules carrying anakinra were loaded into TARPs, and the effects of TARP-mediated annular repair and anakinra delivery were evaluated in a goat model of annular injury in the cervical spine. TARPs integrated with native tissue and provided structural reinforcement at the injury site that prevented aberrant disc-wide remodeling resulting from detensioning of the annular fibrosus. The delivery of anakinra by TARP implantation increased matrix deposition and retention at the injury site and improved maintenance of disc extracellular matrix. Anakinra delivery additionally attenuated the inflammatory response associated with TARP implantation, decreasing osteolysis in adjacent vertebrae and preserving disc cellularity and matrix organization throughout the annulus fibrosus. These results demonstrate the therapeutic potential of TARPs for the treatment of intervertebral disc herniation.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc Displacement , Intervertebral Disc , Nanofibers , Animals , Intervertebral Disc Displacement/drug therapy , Intervertebral Disc Displacement/surgery , Goats , Capsules , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Intervertebral Disc Degeneration/surgery
5.
Proc Natl Acad Sci U S A ; 120(22): e2211947120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216538

ABSTRACT

Cells integrate mechanical cues to direct fate specification to maintain tissue function and homeostasis. While disruption of these cues is known to lead to aberrant cell behavior and chronic diseases, such as tendinopathies, the underlying mechanisms by which mechanical signals maintain cell function are not well understood. Here, we show using a model of tendon de-tensioning that loss of tensile cues in vivo acutely changes nuclear morphology, positioning, and expression of catabolic gene programs, resulting in subsequent weakening of the tendon. In vitro studies using paired ATAC/RNAseq demonstrate that the loss of cellular tension rapidly reduces chromatin accessibility in the vicinity of Yap/Taz genomic targets while also increasing expression of genes involved in matrix catabolism. Concordantly, the depletion of Yap/Taz elevates matrix catabolic expression. Conversely, overexpression of Yap results in a reduction of chromatin accessibility at matrix catabolic gene loci, while also reducing transcriptional levels. The overexpression of Yap not only prevents the induction of this broad catabolic program following a loss of cellular tension, but also preserves the underlying chromatin state from force-induced alterations. Taken together, these results provide novel mechanistic details by which mechanoepigenetic signals regulate tendon cell function through a Yap/Taz axis.


Subject(s)
Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Chromatin/genetics , Chromatin/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Homeostasis , Signal Transduction/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
6.
Mol Biol Cell ; 34(7): ar73, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37043309

ABSTRACT

Chondrocyte phenotype is preserved when cells are round and the actin cytoskeleton is cortical. Conversely, these cells rapidly dedifferentiate in vitro with increased mechanoactive Rho signaling, which increases cell size and causes large actin stress fiber to form. While the effects of Rho on chondrocyte phenotype are well established, the molecular mechanism is not yet fully elucidated. Yap, a transcriptional coregulator, is regulated by Rho in a mechanotransductive manner and can suppress chondrogenesis in vivo. Here, we sought to elucidate the relationship between mechanoactive Rho and Yap on chondrogenic gene expression. We first show that decreasing mechanoactive state through Rho inhibition results in a broad increase in chondrogenic gene expression. Next, we show that Yap and its coregulator Taz are negative regulators of chondrogenic gene expression, and removal of these factors promotes chondrogenesis even in environments that promote cell spreading. Finally, we establish that Yap/Taz is essential for translating Rho-mediated signals to negatively regulate chondrogenic gene expression, and that its removal negates the effects of increased Rho signaling. Together, these data indicate that Rho is a mechanoregulator of chondrogenic differentiation, and that its impact on chondrogenic expression is exerted principally through mechanically induced translocation and activity of Yap and Taz.


Subject(s)
Adaptor Proteins, Signal Transducing , Transcription Factors , Adaptor Proteins, Signal Transducing/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins , Chondrogenesis , Gene Expression
7.
J Orthop Res ; 41(9): 2055-2064, 2023 09.
Article in English | MEDLINE | ID: mdl-36866823

ABSTRACT

Meniscus tears represent a common orthopedic injury that often requires surgery to restore pain-free function. The need for surgical intervention is due, in part, to the inflammatory and catabolic environment that inhibits meniscus healing after injury. In other organ systems, healing is dependent on the migration of cells to the site of injury; however, in the meniscus, it is currently unknown how the microenvironment dictates cell migration in the postinjury inflamed setting. Here, we investigated how inflammatory cytokines alter meniscal fibrochondrocyte (MFC) migration and sensation of microenvironmental stiffness. We further tested whether an FDA approved interleukin-1 receptor antagonist (IL-1Ra; Anakinra) could rescue migratory deficits caused by inflammatory challenge. When cultured in the presence of inflammatory cytokines (tumor necrosis factor-α [TNF-α] or interleukin-1ß [IL-1ß]) for 1 day, MFC migration was inhibited for 3 days before returning to control levels at Day 7. This migratory deficit was clear in three-dimensional as well, where fewer MFCs exposed to inflammatory cytokines migrated from a living meniscal explant compared with control. Notably, addition of IL-1Ra to MFCs previously exposed to IL-1ß restored migration to baseline levels. This study demonstrates that joint inflammation can have negative impacts on meniscus cell migration and mechanosensation, affecting their potential for repair, and that resolution of this inflammation with concurrent anti-inflammatories can reverse these deficits. Future work will apply these findings to mitigate the negative consequences of joint inflammation and promote repair in a clinically relevant meniscus injury model.


Subject(s)
Interleukin 1 Receptor Antagonist Protein , Meniscus , Humans , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Cytokines , Tumor Necrosis Factor-alpha/metabolism , Cell Movement , Inflammation
8.
Adv Healthc Mater ; 10(10): e2100315, 2021 05.
Article in English | MEDLINE | ID: mdl-33738988

ABSTRACT

Cartilage injuries and subsequent tissue deterioration impact millions of patients. Since the regeneration of functional hyaline cartilage remains elusive, methods to stabilize the remaining tissue, and prevent further deterioration, would be of significant clinical utility and prolong joint function. Finite element modeling shows that fortification of the degenerate cartilage (Reinforcement) and reestablishment of a superficial zone (Sealing) are both required to restore fluid pressurization within the tissue and restrict fluid flow and matrix loss from the defect surface. Here, a hyaluronic acid (HA) hydrogel system is designed to both interdigitate with and promote the sealing of the degenerated cartilage. Interdigitating fortification restores both bulk and local pericellular tissue mechanics, reestablishing the homeostatic mechanotransduction of endogenous chondrocytes within the tissue. This HA therapy is further functionalized to present chemo mechanical cues that improve the attachment and direct the response of mesenchymal stem/stromal cells at the defect site, guiding localized extracellular matrix deposition to "seal" the defect. Together, these results support the therapeutic potential, across cell and tissue length scales, of an innovative hydrogel therapy for the treatment of damaged cartilage.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cells , Chondrocytes , Chondrogenesis , Humans , Hydrogels , Mechanotransduction, Cellular , Tissue Engineering
9.
Sci Rep ; 11(1): 5950, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723274

ABSTRACT

Cells interpret cues from and interact with fibrous microenvironments through the body based on the mechanics and organization of these environments and the phenotypic state of the cell. This in turn regulates mechanoactive pathways, such as the localization of mechanosensitive factors. Here, we leverage the microscale heterogeneity inherent to engineered fiber microenvironments to produce a large morphologic data set, across multiple cells types, while simultaneously measuring mechanobiological response (YAP/TAZ nuclear localization) at the single cell level. This dataset describing a large dynamic range of cell morphologies and responses was coupled with a machine learning approach to predict the mechanobiological state of individual cells from multiple lineages. We also noted that certain cells (e.g., invasive cancer cells) or biochemical perturbations (e.g., modulating contractility) can limit the predictability of cells in a universal context. Leveraging this finding, we developed further models that incorporate biochemical cues for single cell prediction or identify individual cells that do not follow the established rules. The models developed here provide a tool for connecting cell morphology and signaling, incorporating biochemical cues in predictive models, and identifying aberrant cell behavior at the single cell level.


Subject(s)
Cell Physiological Phenomena , Cells/cytology , Cellular Microenvironment , Mechanotransduction, Cellular , Models, Biological , Algorithms , Animals , Cell Line, Tumor , Cell Nucleus , Cells/pathology , Fibroblasts , Humans , Mice , Neural Networks, Computer , Tumor Microenvironment
10.
J Anat ; 238(4): 986-998, 2021 04.
Article in English | MEDLINE | ID: mdl-33205444

ABSTRACT

Intervertebral disc (IVD) degeneration and associated back pain place a significant burden on the population. IVD degeneration is a progressive cascade of cellular, compositional, and structural changes, which results in a loss of disc height, disorganization of extracellular matrix architecture, tears in the annulus fibrosus which may involve herniation of the nucleus pulposus, and remodeling of the bony and cartilaginous endplates (CEP). These changes to the IVD often occur concomitantly, across the entire motion segment from the disc subcomponents to the CEP and vertebral bone, making it difficult to determine the causal initiating factor of degeneration. Furthermore, assessments of the subcomponents of the IVD have been largely qualitative, with most studies focusing on a single attribute, rather than multiple adjacent IVD substructures. The objective of this study was to perform a multiscale and multimodal analysis of human lumbar motion segments across various length scales and degrees of degeneration. We performed multiple assays on every sample and identified several correlations between structural and functional measurements of disc subcomponents. Our results demonstrate that with increasing Pfirrmann grade there is a reduction in disc height and nucleus pulposus T2 relaxation time, in addition to alterations in motion segment macromechanical function, disc matrix composition and cellular morphology. At the cartilage endplate-vertebral bone interface, substantial remodeling was observed coinciding with alterations in micromechanical properties. Finally, we report significant relationships between vertebral bone and nucleus pulposus metrics, as well as between micromechanical properties of the endplate and whole motion segment biomechanical parameters, indicating the importance of studying IVD degeneration as a whole organ.


Subject(s)
Intervertebral Disc Degeneration/physiopathology , Intervertebral Disc/physiopathology , Lumbar Vertebrae/physiopathology , Aged , Aged, 80 and over , Female , Humans , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/pathology , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/pathology , Male , Middle Aged , X-Ray Microtomography
11.
JOR Spine ; 3(2): e1086, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32613161

ABSTRACT

Tissue-engineered whole disc replacements are an emerging treatment strategy for advanced intervertebral disc degeneration. A challenge facing the translation of tissue-engineered disc replacement to clinical use are the opposing needs of initial immobilization to advantage integration contrasted with physiologic loading and its anabolic effects. Here, we utilize our established rat tail model of tissue engineered disc replacement with external fixation to study the effects of remobilization at two time points postimplantation on engineered disc structure, composition, and function. Our results suggest that the restoration of mechanical loading following immobilization enhanced collagen and proteoglycan content within the nucleus pulposus and annulus fibrosus of the engineered discs, in addition to improving the integration of the endplate region of the construct with native bone. Despite these benefits, angulation of the vertebral bodies at the implanted level occurred following remobilization at both early and late time points, reducing tensile failure properties in the remobilized groups compared to the fixed group. These results demonstrate the necessity of restoring physiologic mechanical loading to engineered disc implants in vivo, and the need to transition toward their evaluation in larger animal models with more human-like anatomy and motion compared to the rat tail.

12.
Acta Biomater ; 111: 232-241, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32447064

ABSTRACT

Tissue-engineered replacement discs are an area of intense investigation for the treatment of end-stage intervertebral disc (IVD) degeneration. These living implants can integrate into the IVD space and recapitulate native motion segment function. We recently developed a multiphasic tissue-engineered disc-like angle-ply structure (DAPS) that models the micro-architectural and functional features of native tissue. While these implants resulted in functional restoration of the motion segment in rat and caprine models, we also noted deficiencies in cell infiltration and homogeneity of matrix deposition in the electrospun poly(ε-caprolactone) outer region (annulus fibrosus, AF) of the DAPS. To address this limitation, here, we incorporated a sacrificial water-soluble polymer, polyethylene oxide (PEO), as a second fiber fraction within the AF region to increase porosity of the implant. Maturation of these PEO-modified DAPS were evaluated after 5 and 10 weeks of in vitro culture in terms of AF biochemical content, MRI T2 values, overall construct mechanical properties, AF micromechanical properties and cell and matrix distribution. To assess the performance of the PEO-modified DAPS in vivo, precultured constructs were implanted into the rat caudal IVD space for 10 weeks. Results showed that matrix distribution was more homogenous in PCL/PEO DAPS, as evidenced by more robust histological staining, organized collagen deposition and micromechanical properties, compared to standard PCL-only DAPS in vitro. Cell and matrix infiltration were also improved in vivo, but no differences in macromechanical properties and a trend towards improved micromechanical properties were observed. These findings demonstrate that the inclusion of a sacrificial PEO fiber fraction in the DAPS AF region improves cellular colonization, matrix elaboration, and in vitro and in vivo function of an engineered IVD implant. STATEMENT OF SIGNIFICANCE: This work establishes a method for improving cell infiltration and matrix distribution within tissue-engineered dense fibrous scaffolds for intervertebral disc replacement. Tissue-engineered whole disc replacements are an attractive alternative to the current gold standard (mechanical disc arthroplasty or vertebral fusion) for the clinical treatment of patients with advanced disc degeneration.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Goats , Humans , Intervertebral Disc Degeneration/therapy , Rats , Tissue Engineering , Tissue Scaffolds
13.
J Bone Miner Res ; 35(8): 1572-1581, 2020 08.
Article in English | MEDLINE | ID: mdl-32176817

ABSTRACT

The intervertebral disc is the largest avascular structure in the body, and cells within the disc rely on diffusive transport via vasculature located within the vertebral endplate to receive nutrients, eliminate waste products, and maintain disc health. However, the mechanisms by which small molecule transport into the disc occurs in vivo and how these parameters change with disc degeneration remain understudied. Here, we utilize an in vivo rabbit puncture disc degeneration model to study these interactions and provide evidence that remodeling of the endplate adjacent to the disc occurs concomitant with degeneration. Our results identify significant increases in endplate bone volume fraction, increases in microscale stiffness of the soft tissue interfaces between the disc and vertebral bone, and reductions in endplate vascularity and small molecule transport into the disc as a function of degenerative state. A neural network model identified changes in diffusion into the disc as the most significant predictor of disc degeneration. These findings support the critical role of trans-endplate transport in disease progression and will improve patient selection to direct appropriate surgical intervention and inform new therapeutic approaches to improve disc health. © 2020 American Society for Bone and Mineral Research. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Animals , Biological Transport , Disease Progression , Intervertebral Disc/metabolism , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/metabolism , Lumbar Vertebrae/metabolism , Rabbits
14.
J Biomech Eng ; 142(3)2020 03 01.
Article in English | MEDLINE | ID: mdl-31956901

ABSTRACT

Articular cartilage is one of the most unique materials found in nature. This tissue's ability to provide low friction and low wear over decades of constant use is not surpassed, as of yet, by any synthetic materials. Lubrication of the body's joints is essential to mammalian locomotion, but breakdown and degeneration of cartilage is the leading cause of severe disability in the industrialized world. In this paper, we review how theories of cartilage lubrication have evolved over the past decades and connect how theories of cartilage lubrication have been translated to lubrication-based therapies. Here, we call upon these historical perspectives and highlight the open questions in cartilage lubrication research. Additionally, these open questions within the field's understanding of natural lubrication mechanisms reveal strategic directions for lubrication therapy.


Subject(s)
Lubrication , Cartilage, Articular , Friction , Hyaluronic Acid
15.
Nat Biomed Eng ; 3(12): 998-1008, 2019 12.
Article in English | MEDLINE | ID: mdl-31611678

ABSTRACT

In fibrous tissues, prestressed boundary constraints at bone interfaces instil residual strain throughout the tissue, even when unloaded. For example, internal swelling pressures in the central nucleus pulposus of the intervertebral disc generate prestrain in the outer annulus fibrosus. With injury and depressurization, these residual strains are lost. Here we show that the loss of residual strains in the intervertebral disc alters the microenvironment and instigates aberrant tissue remodelling and the adoption of atypical cellular phenotypes. By using puncture surgery of the annulus fibrosus in rabbits, ex vivo puncture experiments and electrospun nanofibrous scaffolds recapitulating these evolving boundary constraints, we show that the loss of residual strain promotes short-term apoptosis and the emergence of a fibrotic phenotype. We also show that local fibre organization and cellular contractility mediate this process and that the aberrant cellular changes could be abrogated by targeting the cell-mechanosensing machinery with small molecules. Our findings indicate that injury to dense connective tissues under prestrain alters boundary constraints and residual strain; this leads to aberrant mechanosensing, which in turn promotes disease progression.


Subject(s)
Annulus Fibrosus/metabolism , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/injuries , Intervertebral Disc/metabolism , Animals , Annulus Fibrosus/diagnostic imaging , Annulus Fibrosus/pathology , Apoptosis , Biomechanical Phenomena , Disease Models, Animal , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/pathology , Phenotype , Rabbits , Stress, Mechanical
16.
Tissue Eng Part C Methods ; 25(10): 593-608, 2019 10.
Article in English | MEDLINE | ID: mdl-31288616

ABSTRACT

Articular cartilage is integral to the mechanical function of many joints in the body. When injured, cartilage lacks the capacity to self-heal, and thus, therapies and replacements have been developed in recent decades to treat damaged cartilage. Given that the primary function of articular cartilage is mechanical in nature, rigorous physical evaluation of cartilage tissues undergoing treatment and cartilage constructs intended for replacement is an absolute necessity. With the large number of groups developing cartilage tissue engineering strategies, however, a variety of mechanical testing protocols have been reported in the literature. This lack of consensus in testing methods makes comparison between studies difficult at times, and can lead to misinterpretation of data relative to native tissue. Therefore, the purpose of this study was to systematically review mechanical testing of articular cartilage and cartilage repair constructs over the past 10 years (January 2009-December 2018), to highlight the most common testing configurations, and to identify key testing parameters. For the most common tests, key parameters identified in this systematic review were validated by characterizing both cartilage tissue and hydrogels commonly used in cartilage tissue engineering. Our findings show that compression testing was the most common test performed (80.2%; 158/197), followed by evaluation of frictional properties (18.8%; 37/197). Upon further review of those studies performing compression testing, the various modes (ramp, stress relaxation, creep, dynamic) and testing configurations (unconfined, confined, in situ) are described and systematically reviewed for parameters, including strain rate, equilibrium time, and maximum strain. This systematic analysis revealed considerable variability in testing methods. Our validation testing studies showed that such variations in testing criteria could have large implications on reported outcome parameters (e.g., modulus) and the interpretation of findings from these studies. This analysis is carried out for all common testing methods, followed by a discussion of less common trends and directions in the mechanical evaluation of cartilage tissues and constructs. Overall, this work may serve as a guide for cartilage tissue engineers seeking to rigorously evaluate the physical properties of their novel treatment strategies. Impact Statement Articular cartilage tissue engineering has made significant strides with regard to treatments and replacements for injured tissue. The evaluation of these approaches typically involves mechanical testing, yet the plethora of testing techniques makes comparisons between studies difficult, and often leads to misinterpretation of data compared with native tissue. This study serves as a guide for the mechanical testing of cartilage tissues and constructs, highlighting recent trends in test conditions and validating these common procedures. Cartilage tissue engineers, especially those unfamiliar with mechanical testing protocols, will benefit from this study in their quest to physically evaluate novel treatment and regeneration approaches.


Subject(s)
Cartilage, Articular/growth & development , Tissue Engineering , Animals , Biomechanical Phenomena , Compressive Strength , Humans , Lubrication , Materials Testing , Reference Standards , Stress, Mechanical
17.
PLoS One ; 14(5): e0216702, 2019.
Article in English | MEDLINE | ID: mdl-31075142

ABSTRACT

Hyaluronic acid injections have been a mainstay of arthritis treatment for decades. However, much controversy remains about their clinical efficacy and their potential mechanism of action. This approach to arthritis therapy is often called viscosupplementation, a term which is rooted in the elevated viscosity of the injected solutions. This terminology also suggests a mechanical pathway of action and further implies that their efficacy is dependent on viscosity. Notably, previous studies of the relationship between viscous properties of hyaluronic acid solutions and their clinical efficacy have not been definitive. Recently we developed an experimental and analytical framework for studying cartilage lubrication that captures the Stribeck-like behavior of cartilage in an elastoviscous transition curve. Here we apply this framework to study the lubricating behavior of six hyaluronan products currently used for injectable arthritis therapy in the US. Despite the fact that the source and chemical modifications endow these products with a range of lubricating properties, we show that the lubricating effect of all of these materials can be described by this Stribeck-like elastoviscous transition. Fitting this data to the elastoviscous transition model enables the calculation of effective lubricating viscosities for each material, which differ substantially from the viscosities measured using standard rheometry. Further we show that while data from standard rheometry are poor predictors of clinical performance of these materials, measurements of friction coefficient and effective lubricating viscosity correlate well (R2 = 0.77; p < 0.005) with assessments of improved clinical function reported previously. This approach offers both a novel method that can be used to evaluate potential clinical efficacy of hyaluronic acid formulations and provide new insight on their mode of action.


Subject(s)
Elasticity , Friction , Hyaluronic Acid/chemistry , Rheology , Arthritis/drug therapy , Drug Compounding , Humans , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/therapeutic use , Injections , Treatment Outcome , Viscosity
18.
Sci Transl Med ; 10(468)2018 11 21.
Article in English | MEDLINE | ID: mdl-30463917

ABSTRACT

Tissue engineering holds great promise for the treatment of advanced intervertebral disc degeneration. However, assessment of in vivo integration and mechanical function of tissue-engineered disc replacements over the long term, in large animal models, will be necessary to advance clinical translation. To that end, we developed tissue-engineered, endplate-modified disc-like angle ply structures (eDAPS) sized for the rat caudal and goat cervical spines that recapitulate the hierarchical structure of the native disc. Here, we demonstrate functional maturation and integration of these eDAPS in a rat caudal disc replacement model, with compressive mechanical properties reaching native values after 20 weeks in vivo and evidence of functional integration under physiological loads. To further this therapy toward clinical translation, we implanted eDAPS sized for the human cervical disc space in a goat cervical disc replacement model. Our results demonstrate maintenance of eDAPS composition and structure up to 8 weeks in vivo in the goat cervical disc space and maturation of compressive mechanical properties to match native levels. These results demonstrate the translational feasibility of disc replacement with a tissue-engineered construct for the treatment of advanced disc degeneration.


Subject(s)
Intervertebral Disc/physiology , Prostheses and Implants , Tissue Engineering/methods , Animals , Biomechanical Phenomena , Goats , Male , Prosthesis Implantation , Rats , Time Factors
19.
J Biomech ; 74: 72-78, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29729853

ABSTRACT

Mounting evidence suggests that altered lubricant levels within synovial fluid have acute biological consequences on chondrocyte homeostasis. While these responses have been connected to increased friction, the mechanisms behind this response remain unknown. Here, we combine a frictional bioreactor with confocal elastography and image-based cellular assays to establish the link between cartilage friction, microscale shear strain, and acute, adverse cellular responses. Our incorporation of cell-scale strain measurements reveals that elevated friction generates high shear strains localized near the tissue surface, and that these elevated strains are closely associated with mitochondrial dysfunction, apoptosis, and cell death. Collectively, our data establish two pathways by which chondrocytes negatively respond to friction: an immediate necrotic response and a longer term pathway involving mitochondrial dysfunction and apoptosis. Specifically, in the surface region, where shear strains can exceed 0.07, cells are predisposed to acute death; however, below this surface region, cells exhibit a pathway consistent with apoptosis in a manner predicted by local shear strains. These data reveal a mechanism through which cellular damage in cartilage arises from compromised lubrication and show that in addition to boundary lubricants, there are opportunities upstream of apoptosis to preserve chondrocyte health in arthritis therapy.


Subject(s)
Cartilage, Articular/cytology , Cartilage, Articular/physiology , Chondrocytes/cytology , Friction , Materials Testing , Stress, Mechanical , Animals , Biomechanical Phenomena , Humans , Synovial Fluid/physiology , Weight-Bearing
20.
Annu Rev Biomed Eng ; 20: 403-429, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29641907

ABSTRACT

The connective tissues of the musculoskeletal system can be grouped into fibrous, cartilaginous, and calcified tissues. While each tissue type has a distinct composition and function, the intersections between these tissues result in the formation of complex, composite, and graded junctions. The complexity of these interfaces is a critical aspect of their healthy function, but poses a significant challenge for their repair. In this review, we describe the organization and structure of complex musculoskeletal interfaces, identify emerging technologies for engineering such structures, and outline the requirements for assessing the complex nature of these tissues in the context of recapitulating their function through tissue engineering.


Subject(s)
Cartilage, Articular/physiology , Tissue Engineering/methods , Tissue Scaffolds , Animals , Bone and Bones/physiology , Humans , Intervertebral Disc/pathology , Ligaments/pathology , Temporomandibular Joint/pathology , Tendons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...