Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Med Virol ; 96(5): e29671, 2024 May.
Article in English | MEDLINE | ID: mdl-38747003

ABSTRACT

The coronavirus disease of 2019 (COVID-19) pandemic has led to more than 700 million confirmed cases and nearly 7 million deaths. Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus mainly infects the respiratory system, neurological complications are widely reported in both acute infection and long-COVID cases. Despite the success of vaccines and antiviral treatments, neuroinvasiveness of SARS-CoV-2 remains an important question, which is also centered on the mystery of whether the virus is capable of breaching the barriers into the central nervous system. By studying the K18-hACE2 infection model, we observed clear evidence of microvascular damage and breakdown of the blood-brain barrier (BBB). Mechanistically, SARS-CoV-2 infection caused pericyte damage, tight junction loss, endothelial activation and vascular inflammation, which together drive microvascular injury and BBB impairment. In addition, the blood-cerebrospinal fluid barrier at the choroid plexus was also impaired after infection. Therefore, cerebrovascular and choroid plexus dysfunctions are important aspects of COVID-19 and may contribute to neurological complications both acutely and in long COVID.


Subject(s)
Blood-Brain Barrier , COVID-19 , Choroid Plexus , SARS-CoV-2 , Blood-Brain Barrier/virology , Animals , Choroid Plexus/virology , Choroid Plexus/pathology , COVID-19/virology , COVID-19/pathology , COVID-19/complications , COVID-19/physiopathology , Mice , Tight Junctions/virology , Disease Models, Animal , Angiotensin-Converting Enzyme 2/metabolism , Inflammation/virology , Humans , Pericytes/virology , Pericytes/pathology
3.
Proc Natl Acad Sci U S A ; 119(15): e2113310119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35377817

ABSTRACT

Gestational maternal immune activation (MIA) in mice induces persistent brain microglial activation and a range of neuropathologies in the adult offspring. Although long-term phenotypes are well documented, how MIA in utero leads to persistent brain inflammation is not well understood. Here, we found that offspring of mothers treated with polyriboinosinic­polyribocytidylic acid [poly(I:C)] to induce MIA at gestational day 13 exhibit blood­brain barrier (BBB) dysfunction throughout life. Live MRI in utero revealed fetal BBB hyperpermeability 2 d after MIA. Decreased pericyte­endothelium coupling in cerebral blood vessels and increased microglial activation were found in fetal and 1- and 6-mo-old offspring brains. The long-lasting disruptions result from abnormal prenatal BBB formation, driven by increased proliferation of cyclooxygenase-2 (COX2; Ptgs2)-expressing microglia in fetal brain parenchyma and perivascular spaces. Targeted deletion of the Ptgs2 gene in fetal myeloid cells or treatment with the inhibitor celecoxib 24 h after immune activation prevented microglial proliferation and disruption of BBB formation and function, showing that prenatal COX2 activation is a causal pathway of MIA effects. Thus, gestational MIA disrupts fetal BBB formation, inducing persistent BBB dysfunction, which promotes microglial overactivation and behavioral alterations across the offspring life span. Taken together, the data suggest that gestational MIA disruption of BBB formation could be an etiological contributor to neuropsychiatric disorders.


Subject(s)
Blood-Brain Barrier , Cyclooxygenase 2 , Encephalitis , Maternal-Fetal Exchange , Microglia , Prenatal Exposure Delayed Effects , Animals , Blood-Brain Barrier/abnormalities , Blood-Brain Barrier/physiopathology , Celecoxib/pharmacology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Encephalitis/immunology , Female , Gene Deletion , Maternal-Fetal Exchange/immunology , Mice , Microglia/enzymology , Poly I-C/immunology , Pregnancy , Prenatal Exposure Delayed Effects/immunology
4.
Sci Transl Med ; 14(641): eabe9726, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35442708

ABSTRACT

The fetal brain is constantly exposed to maternal IgG before the formation of an effective blood-brain barrier (BBB). Here, we studied the consequences of fetal brain exposure to an antibody to the astrocytic protein aquaporin-4 (AQP4-IgG) in mice. AQP4-IgG was cloned from a patient with neuromyelitis optica spectrum disorder (NMOSD), an autoimmune disease that can affect women of childbearing age. We found that embryonic radial glia cells in neocortex express AQP4. These cells are critical for blood vessel and BBB formation through modulation of the WNT signaling pathway. Male fetuses exposed to AQP4-IgG had abnormal cortical vasculature and lower expression of WNT signaling molecules Wnt5a and Wnt7a. Positron emission tomography of adult male mice exposed in utero to AQP4-IgG revealed increased blood flow and BBB leakiness in the entorhinal cortex. Adult male mice exposed in utero to AQP4-IgG had abnormal cortical vessels, fewer dendritic spines in pyramidal and stellate neurons, and more S100ß+ astrocytes in the entorhinal cortex. Behaviorally, they showed impairments in the object-place memory task. Neural recordings indicated that their grid cell system, within the medial entorhinal cortex, did not map the local environment appropriately. Collectively, these data implicate in utero binding of AQP4-IgG to radial glia cells as a mechanism for alterations of the developing male brain and adds NMOSD to the conditions in which maternal IgG may cause persistent brain dysfunction in offspring.


Subject(s)
Autoantibodies , Neuromyelitis Optica , Animals , Aquaporin 4/metabolism , Blood-Brain Barrier/metabolism , Female , Humans , Immunoglobulin G , Male , Mice
5.
Acta Physiol (Oxf) ; 229(4): e13478, 2020 08.
Article in English | MEDLINE | ID: mdl-32311818

ABSTRACT

AIM: Serotonin is crucial for proper foetal development, and the placenta has been described as a 'donor' of serotonin for the embryo/foetus. However, in later stages of gestation the foetus produces its own serotonin from maternally-derived tryptophan and placental supply is no longer needed. We propose a novel model of serotonin homeostasis in the term placenta with special focus on the protective role of organic cation transporter 3 (OCT3/SLC22A3). METHODS: Dually perfused rat term placenta was employed to quantify serotonin/tryptophan transport and metabolism. Placental membrane vesicles isolated from human term placenta were used to characterize serotonin transporters on both sides of the syncytiotrophoblast. RESULTS: We obtained the first evidence that serotonin is massively taken up from the foetal circulation by OCT3. This uptake is concentration-dependent and inhibitable by OCT3 blockers of endogenous (glucocorticoids) or exogenous (pharmaceuticals) origin. Population analyses in rat placenta revealed that foetal sex influences placental extraction of serotonin from foetal circulation. Negligible foetal serotonin levels were detected in maternal-to-foetal serotonin/tryptophan transport and metabolic studies. CONCLUSION: We demonstrate that OCT3, localized on the foetus-facing membrane of syncytiotrophoblast, is an essential component of foeto-placental homeostasis of serotonin. Together with serotonin degrading enzyme, monoamine oxidase-A, this offers a protective mechanism against local vasoconstriction effects of serotonin in the placenta. However, this system may be compromised by OCT3 inhibitory molecules, such as glucocorticoids or antidepressants. Our findings open new avenues to explore previously unsuspected/unexplained complications during pregnancy including prenatal glucocorticoid excess and pharmacotherapeutic risks of treating pregnant women with OCT3 inhibitors.


Subject(s)
Monoamine Oxidase/metabolism , Organic Cation Transport Proteins/metabolism , Placenta , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin , Animals , Female , Fetus , Homeostasis , Humans , Placenta/metabolism , Pregnancy , Rats , Serotonin/metabolism , Sex Factors
7.
ACS Chem Neurosci ; 10(7): 3307-3317, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31184110

ABSTRACT

Human epidemiological and animal-model studies suggest that separate exposure to stress or serotonin-selective reuptake inhibitor (SSRI) antidepressants during pregnancy increases risks for neurodevelopmental disorders in offspring. Yet, little is known about the combined effects of maternal stress and SSRIs with regard to brain development in utero. We found that the placenta is highly permeable to the commonly prescribed SSRI (±)-citalopram (CIT) in humans and mice, allowing rapid exposure of the fetal brain to this drug. We investigated the effects of maternal chronic unpredictable stress in mice with or without maternal oral administration of CIT from embryonic day (E)8 to E17. We assessed fetal brain development using magnetic resonance imaging and quantified changes in serotonergic, thalamocortical, and cortical development. In utero exposure to maternal stress did not affect overall fetal brain growth. However, serotonin tissue content in the fetal forebrain was increased in association with maternal stress; this increase was reversed by maternal CIT. In utero exposure to stress increased the numbers of deep-layer neurons in specific cortical regions, whereas CIT increased overall cell numbers without changing the proportions of layer-specific neurons to offset the effects of stress on deep-layer cortical development. These findings suggest that stress and SSRI exposure in utero differentially impact serotonin-dependent fetal neurodevelopment such that CIT reverses key effects of maternal gestational stress on offspring brain development.


Subject(s)
Brain/drug effects , Citalopram/pharmacology , Fetal Development/drug effects , Maternal Exposure , Selective Serotonin Reuptake Inhibitors/pharmacology , Stress, Psychological , Animals , Brain/diagnostic imaging , Brain/growth & development , Brain/metabolism , Disease Models, Animal , Female , Fetal Development/physiology , Magnetic Resonance Imaging , Mice , Neurogenesis/drug effects , Neurons/drug effects , Neurons/metabolism , Pregnancy , Serotonin/metabolism
8.
Eur J Pharmacol ; 833: 298-306, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29890156

ABSTRACT

Serotonin exerts a modulating function on the development of the central nervous system, including hypothalamic circuits controlling feeding behavior and energy expenditure. Based on the developmental plasticity theory, early disturbances of synaptic availability of serotonin may promote phenotypic adaptations and late disorders of energy balance regulation leading to obesity and associated diseases. The aim of this systematic review is to determine the effects of pharmacological neonatal inhibition of serotonin reuptake by fluoxetine, on parameters related to feeding behavior and energy balance. Literature searches were performed in Medline/PubMed and Lilacs databases, out of which 9726 studies were found. Using predefined protocol and registered on CAMARADES website, 23 studies were included for qualitative synthesis. The internal validity was assessed using the SYRCLE's risk of bias toll. Kappa index was also measured for analyzing the concordance between the reviewers. In addition, the PRISMA statement was used for reporting this systematic review. Most of the included studies demonstrated that neonatal serotonin reuptake inhibition is associated with long term reduced body weight, lower fat mass and higher thermogenic capacity and mitochondrial oxygen consumption in key metabolic tissues. Therefore, experimental fluoxetine exposure during neonatal development may promote long-term changes related to energy balance associated with a lean phenotype.


Subject(s)
Energy Metabolism/drug effects , Feeding Behavior/drug effects , Fluoxetine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin/metabolism , Animals , Body Weight/drug effects , Hypothalamus/drug effects , Hypothalamus/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Models, Animal
9.
Dev Neurosci ; 39(6): 519-528, 2017.
Article in English | MEDLINE | ID: mdl-29080891

ABSTRACT

The kynurenine pathway (KP), the major catabolic route of tryptophan in mammals, contains several neuroactive metabolites, including kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK). KP metabolism, and especially the fate of KYNA, during pregnancy is poorly understood, yet it may play a significant role in the development of psychiatric disorders later in life. The present study was designed to investigate the prenatal features of KP metabolism in vivo, with special focus on KYNA. To this end, pregnant CD-1 mice were treated systemically with kynurenine (100 mg/kg), KYNA (10 mg/kg), or saline on embryonic day 18. As expected, administration of either kynurenine or KYNA increased KYNA levels in the maternal plasma and placenta. Maternal kynurenine treatment also raised kynurenine levels in the fetal plasma and brain, demonstrating the ability of this pivotal KP metabolite to cross the placenta and increase the levels of both KYNA and 3-HK in the fetal brain. In contrast, maternal administration of KYNA caused only a small, nonsignificant elevation in KYNA levels in fetal plasma and brain. Complementary experiments using an ex vivo placental perfusion procedure confirmed the significant transplacental transfer of kynurenine and demonstrated that only a very small fraction of maternal kynurenine is converted to KYNA in the placenta and released into the fetal compartment under physiological conditions. Jointly, these results help to clarify the contributions of the maternal circulation and the placenta to fetal KYNA in the late prenatal period.


Subject(s)
Brain/drug effects , Kynurenic Acid/pharmacology , Kynurenine/metabolism , Placenta/drug effects , Animals , Brain/metabolism , Female , Kynurenine/analogs & derivatives , Kynurenine/pharmacology , Mice , Placenta/metabolism , Pregnancy , Tryptophan/metabolism
10.
Nat Microbiol ; 2(11): 1558-1570, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28827581

ABSTRACT

Blood CD14+ monocytes are frontline immunomodulators categorized into classical, intermediate or non-classical subsets, and subsequently differentiated into M1 pro- or M2 anti-inflammatory macrophages on stimulation. Although the Zika virus (ZIKV) rapidly establishes viraemia, the target cells and immune responses, particularly during pregnancy, remain elusive. Furthermore, it is unknown whether African- and Asian-lineage ZIKV have different phenotypic impacts on host immune responses. Using human blood infection, we identified CD14+ monocytes as the primary target for African- or Asian-lineage ZIKV infection. When immunoprofiles of human blood infected with ZIKV were compared, a classical/intermediate monocyte-mediated M1-skewed inflammation by the African-lineage ZIKV infection was observed, in contrast to a non-classical monocyte-mediated M2-skewed immunosuppression by the Asian-lineage ZIKV infection. Importantly, infection of the blood of pregnant women revealed an enhanced susceptibility to ZIKV infection. Specifically, Asian-lineage ZIKV infection of pregnant women's blood led to an exacerbated M2-skewed immunosuppression of non-classical monocytes in conjunction with a global suppression of type I interferon-signalling pathway and an aberrant expression of host genes associated with pregnancy complications. Also, 30 ZIKV+ sera from symptomatic pregnant patients showed elevated levels of M2-skewed immunosuppressive cytokines and pregnancy-complication-associated fibronectin-1. This study demonstrates the differential immunomodulatory responses of blood monocytes, particularly during pregnancy, on infection with different lineages of ZIKV.


Subject(s)
Immune Tolerance , Lipopolysaccharide Receptors/immunology , Monocytes/virology , Pregnancy Complications, Infectious/immunology , Zika Virus Infection/immunology , Zika Virus/physiology , Adolescent , Adult , Cell Differentiation , Cytokines/blood , Cytokines/immunology , Female , Fibronectins , Gene Expression Profiling , Host-Pathogen Interactions , Humans , Immunity, Innate , Interferon Type I/immunology , Macrophages/virology , Monocytes/physiology , Pregnancy , Pregnancy Complications, Infectious/virology , Signal Transduction , Young Adult , Zika Virus/genetics , Zika Virus/immunology , Zika Virus Infection/virology
12.
ACS Chem Neurosci ; 8(5): 1019-1025, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28076682

ABSTRACT

Fetal exposure to selective serotonin reuptake inhibitors (SSRI) has been associated with increased risk of adverse neurodevelopmental outcomes. In the adult brain, SSRI therapy regulates p11 (s100a10) expression and alters neurogenesis. The protein p11 indirectly regulates 5-HT signaling through 5-HT1B/D receptors. In the fetal brain, signaling through these receptors modulates axonal circuit formation. We determined whether p11 is expressed in the fetal mouse brain, and whether maternal SSRI exposure affects fetal p11 expression and neurogenesis. The SSRI ± citalopram was administered to pregnant mice from gestational day 8 to 17. Results show that p11 is expressed in fetal thalamic neurons and thalamocortical axons. Furthermore, p11 protein expression is significantly decreased in the fetal thalamus after in utero ±citalopram exposure compared to untreated controls, and neurogenesis is significantly decreased in specific fetal brain regions. These findings reveal differential regulation of p11 expression and altered neurogenesis in the fetal brain as a result of maternal SSRI exposure.


Subject(s)
Citalopram/pharmacology , Neurogenesis/drug effects , Neurons/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Thalamus/drug effects , Animals , Axons/drug effects , Female , Maternal Exposure , Mice , Pregnancy
13.
Neuropsychopharmacology ; 42(2): 427-436, 2017 01.
Article in English | MEDLINE | ID: mdl-27550733

ABSTRACT

Biomarker, neuroimaging, and genetic findings implicate the serotonin transporter (SERT) in autism spectrum disorder (ASD). Previously, we found that adult male mice expressing the autism-associated SERT Ala56 variant have altered central serotonin (5-HT) system function, as well as elevated peripheral blood 5-HT levels. Early in gestation, before midbrain 5-HT projections have reached the cortex, peripheral sources supply 5-HT to the forebrain, suggesting that altered maternal or placenta 5-HT system function could impact the developing embryo. We therefore used different combinations of maternal and embryo SERT Ala56 genotypes to examine effects on blood, placenta and embryo serotonin levels and neurodevelopment at embryonic day E14.5, when peripheral sources of 5-HT predominate, and E18.5, when midbrain 5-HT projections have reached the forebrain. Maternal SERT Ala56 genotype was associated with decreased placenta and embryonic forebrain 5-HT levels at E14.5. Low 5-HT in the placenta persisted, but forebrain levels normalized by E18.5. Maternal SERT Ala56 genotype effects on forebrain 5-HT levels were accompanied by a broadening of 5-HT-sensitive thalamocortical axon projections. In contrast, no effect of embryo genotype was seen in concepti from heterozygous dams. Blood 5-HT levels were dynamic across pregnancy and were increased in SERT Ala56 dams at E14.5. Placenta RNA sequencing data at E14.5 indicated substantial impact of maternal SERT Ala56 genotype, with alterations in immune and metabolic-related pathways. Collectively, these findings indicate that maternal SERT function impacts offspring placental 5-HT levels, forebrain 5-HT levels, and neurodevelopment.


Subject(s)
Maternal-Fetal Exchange , Placenta/metabolism , Prosencephalon/embryology , Prosencephalon/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Serotonin/biosynthesis , Animals , Female , Genotype , Mice, Inbred Strains , Mice, Transgenic , Pregnancy , Rhombencephalon/metabolism , Thalamus/embryology , Thalamus/metabolism
14.
J Neurosci ; 36(22): 6041-9, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27251625

ABSTRACT

UNLABELLED: Maternal inflammation during pregnancy affects placental function and is associated with increased risk of neurodevelopmental disorders in the offspring. The molecular mechanisms linking placental dysfunction to abnormal fetal neurodevelopment remain unclear. During typical development, serotonin (5-HT) synthesized in the placenta from maternal l-tryptophan (TRP) reaches the fetal brain. There, 5-HT modulates critical neurodevelopmental processes. We investigated the effects of maternal inflammation triggered in midpregnancy in mice by the immunostimulant polyriboinosinic-polyribocytidylic acid [poly(I:C)] on TRP metabolism in the placenta and its impact on fetal neurodevelopment. We show that a moderate maternal immune challenge upregulates placental TRP conversion rapidly to 5-HT through successively transient increases in substrate availability and TRP hydroxylase (TPH) enzymatic activity, leading to accumulation of exogenous 5-HT and blunting of endogenous 5-HT axonal outgrowth specifically within the fetal forebrain. The pharmacological inhibition of TPH activity blocked these effects. These results establish altered placental TRP conversion to 5-HT as a new mechanism by which maternal inflammation disrupts 5-HT-dependent neurogenic processes during fetal neurodevelopment. SIGNIFICANCE STATEMENT: The mechanisms linking maternal inflammation during pregnancy with increased risk of neurodevelopmental disorders in the offspring are poorly understood. In this study, we show that maternal inflammation in midpregnancy results in an upregulation of tryptophan conversion to serotonin (5-HT) within the placenta. Remarkably, this leads to exposure of the fetal forebrain to increased concentrations of this biogenic amine and to specific alterations of crucially important 5-HT-dependent neurogenic processes. More specifically, we found altered serotonergic axon growth resulting from increased 5-HT in the fetal forebrain. The data provide a new understanding of placental function playing a key role in fetal brain development and how this process is altered by adverse prenatal events such as maternal inflammation. The results uncover important future directions for understanding the early developmental origins of mental disorders.


Subject(s)
Fetal Development/physiology , Fetal Diseases/etiology , Inflammation/complications , Placenta/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Serotonin/metabolism , 5-Hydroxytryptophan/biosynthesis , 5-Hydroxytryptophan/metabolism , Animals , Brain/embryology , Brain/metabolism , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Female , Fenclonine/toxicity , Fetal Development/drug effects , Fetal Diseases/chemically induced , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/physiology , Inflammation/chemically induced , Mice , Placenta/drug effects , Placenta/physiology , Polydeoxyribonucleotides/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Serotonin Antagonists/toxicity , Statistics, Nonparametric
15.
ACS Chem Neurosci ; 7(3): 327-38, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26765210

ABSTRACT

While selective-serotonin reuptake inhibitor (SSRI) antidepressants are commonly prescribed in the treatment of depression, their use during pregnancy leads to fetal drug exposures. According to recent reports, such exposures could affect fetal development and long-term offspring health. A central question is how pregnancy-induced physical and physiological changes in mothers, fetuses, and the placenta influence fetal SSRI exposures during gestation. In this study, we examined the effects of gestational stage on the maternal pharmacokinetics and fetal disposition of the SSRI (±)-citalopram (CIT) in a mouse model. We determined the maternal and fetal CIT serum concentration-time profiles following acute maternal administration on gestational days (GD)14 and GD18, as well as the fetal brain drug disposition. The results show that pregnancy affects the pharmacokinetics of CIT and that maternal drug clearance increases as gestation progresses. The data further show that CIT and its primary metabolite desmethylcitalopram (DCIT) readily cross the placenta into the fetal compartment, and fetal exposure to CIT exceeds that of the mother during gestation 2 h after maternal administration. Enzymatic activity assays revealed that fetal drug metabolic capacity develops in late gestation, resulting in elevated circulating and brain concentrations of DCIT at embryonic day (E)18. Fetal exposure to the SSRI CIT in murine pregnancy is therefore influenced by both maternal gestational stage and embryonic development, suggesting potential time-dependent effects on fetal brain development.


Subject(s)
Citalopram/pharmacokinetics , Fetus/drug effects , Prenatal Exposure Delayed Effects , Selective Serotonin Reuptake Inhibitors/pharmacokinetics , Animals , Chromatography, High Pressure Liquid , Citalopram/toxicity , Female , Mice , Pregnancy , Selective Serotonin Reuptake Inhibitors/toxicity
16.
Cell ; 155(1): 228-41, 2013 Sep 26.
Article in English | MEDLINE | ID: mdl-24074871

ABSTRACT

The powerful regulation of bone mass exerted by the brain suggests the existence of bone-derived signals modulating this regulation or other functions of the brain. We show here that the osteoblast-derived hormone osteocalcin crosses the blood-brain barrier, binds to neurons of the brainstem, midbrain, and hippocampus, enhances the synthesis of monoamine neurotransmitters, inhibits GABA synthesis, prevents anxiety and depression, and favors learning and memory independently of its metabolic functions. In addition to these postnatal functions, maternal osteocalcin crosses the placenta during pregnancy and prevents neuronal apoptosis before embryos synthesize this hormone. As a result, the severity of the neuroanatomical defects and learning and memory deficits of Osteocalcin(-/-) mice is determined by the maternal genotype, and delivering osteocalcin to pregnant Osteocalcin(-/-) mothers rescues these abnormalities in their Osteocalcin(-/-) progeny. This study reveals that the skeleton via osteocalcin influences cognition and contributes to the maternal influence on fetal brain development.


Subject(s)
Brain/growth & development , Osteocalcin/metabolism , Signal Transduction , Aging , Animals , Brain/embryology , Brain/physiology , Female , Fetus/metabolism , Mice , Neurotransmitter Agents/metabolism , Pregnancy
17.
Front Cell Neurosci ; 7: 47, 2013.
Article in English | MEDLINE | ID: mdl-23630464

ABSTRACT

In addition to its role in the pathophysiology of numerous psychiatric disorders, increasing evidence points to serotonin (5-HT) as a crucial molecule for the modulation of neurodevelopmental processes. Recent evidence indicates that the placenta is involved in the synthesis of 5-HT from maternally derived tryptophan (TRP). This gives rise to the possibility that genetic and environmental perturbations directly affecting placental TRP metabolism may lead to abnormal brain circuit wiring in the developing embryo, and therefore contribute to the developmental origin of psychiatric disorders. In this review, we discuss how perturbations of the placental TRP metabolic pathway may lead to abnormal brain development and function throughout life. Of particular interest is prenatal exposure to maternal depression and antidepressants, both known to alter fetal development. We review existing evidence on how antidepressants can alter placental physiology in its key function of maintaining fetal homeostasis and have long-term effects on fetal forebrain development.

18.
Nat Protoc ; 8(1): 66-74, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23237830

ABSTRACT

Ex vivo perfusion systems offer a reliable, reproducible method for studying acute physiological responses of an organ to various environmental manipulations. Unlike in vitro culture systems, the cellular organization, compartmentalization and three-dimensional structure of ex vivo-perfused organs are maintained. These particular parameters are crucial for the normal physiological function of the placenta, which supports fetal growth through transplacental exchange, nutritional synthesis and metabolism, growth factor promotion and regulation of both maternally and fetally derived molecules. The perfusion system described here, which can be completed in 4-5 h, allows for integrated, physiological studies of de novo synthesis and metabolism and transport of materials across the live mouse placenta, not only throughout a normal gestation period but also following a variety of individual or combined genetic and environmental perturbations compromising placental function.


Subject(s)
Maternal-Fetal Exchange , Placenta/physiology , Animals , Dissection/methods , Female , In Vitro Techniques , Mice , Perfusion/methods , Placenta/anatomy & histology , Pregnancy
19.
Eur J Neurosci ; 35(10): 1563-72, 2012 May.
Article in English | MEDLINE | ID: mdl-22607002

ABSTRACT

The topographic organization of the thalamocortical axons (TCAs) in the barrel field (BF) in the rodent primary somatosensory cortex results from a succession of temporally and spatially precise developmental events. Prenatally, growth and guidance mechanisms enable TCAs to navigate through the forebrain and reach the cortex. Postnatally, TCAs grow into the cortex, and the refinement of their terminal arborization pattern in layer IV creates barrel-like structures. The combined results of studies performed over the past 20 years clearly show that serotonin (5-hydroxytryptamine; 5-HT) signaling modulates these pre- and early postnatal developmental processes. In this context, 5-HT signaling can purposely be described as 'modulating' rather than 'controlling' because developmental alterations of 5-HT synthesis, uptake or degradation either have a dramatic, moderate or no effect at all on TCA pathway and BF formation. In this review we summarize and compare the outcomes of diverse pharmacological and genetic manipulations of 5-HT signaling on TCA pathway and BF formation, in an attempt to understand these discrepancies.


Subject(s)
Axons/physiology , Neurons/cytology , Serotonin/metabolism , Signal Transduction/physiology , Somatosensory Cortex , Thalamus , Animals , Humans , Somatosensory Cortex/cytology , Somatosensory Cortex/embryology , Somatosensory Cortex/growth & development , Thalamus/cytology , Thalamus/embryology , Thalamus/growth & development
20.
Neuropsychopharmacology ; 37(8): 1879-84, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22414815

ABSTRACT

Serotonin (5-hydroxytryptamine, 5-HT) signaling is thought to modulate nervous system development. Genetic and pharmacological studies support the idea that altered 5-HT signaling during development can have enduring consequences on brain function and behavior. Recently, we discovered that 5-HT can modulate thalamic axon guidance in vitro and in vivo. Embryonic thalamic axons transiently express the 5-HT transporter (SERT; Slc6a4) and accumulate 5-HT, suggesting that the SERT activity of these axons may regulate 5-HT-modulated guidance cues. We tested whether pharmacologically blocking SERT using selective 5-HT reuptake inhibitors (SSRIs) would impact the action of 5-HT on thalamic axon responses to netrin-1 in vitro. Surprisingly, we observed that two high-affinity SSRIs, racemic citalopram ((RS)-CIT) and paroxetine, affect the outgrowth of embryonic thalamic axons, but differ with respect to their dependence on SERT blockade. Using a recently developed 'citalopram insensitive' transgenic mouse line and in vitro pharmacology, we show that the effect of (RS)-CIT effect is SERT independent, but rather arises from R-CIT activation of the orphan sigma-1 receptor(σ1, Oprs1). Our results reveal a novel σ1 activity in modulating axon guidance and a 5-HT independent action of a widely prescribed SSRI. By extension, (RS)-CIT and possibly other structurally similar SSRIs may have other off-target actions that can impact neural development and contribute to therapeutic efficacy or side effects.


Subject(s)
Citalopram/pharmacology , Nerve Growth Factors/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Thalamus/drug effects , Tumor Suppressor Proteins/pharmacology , Animals , Axons , Coculture Techniques , Female , Fetus , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Transgenic , Netrin-1 , Paroxetine/pharmacology , Receptors, sigma/agonists , Serotonin/pharmacology , Serotonin Plasma Membrane Transport Proteins/genetics , Thalamus/physiology , Sigma-1 Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...