Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 51(3): 1184-94, 2015.
Article in English | MEDLINE | ID: mdl-24961569

ABSTRACT

Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II. In this disease caused by tyrosine aminotransferase deficiency, eyes, skin, and central nervous system disturbances are found. In the present study, we investigated the chronic effect of tyrosine methyl ester (TME) and/or creatine plus pyruvate on some parameters of oxidative stress and enzyme activities of phosphoryltransfer network in cerebral cortex homogenates of 21-day-old Wistar. Chronic administration of TME induced oxidative stress and altered the activities of adenylate kinase and mitochondrial and cytosolic creatine kinase. Total sulfhydryls content, GSH content, and GPx activity were significantly diminished, while DCFH oxidation, TBARS content, and SOD activity were significantly enhanced by TME. On the other hand, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions but enhanced AK activity. In contrast, TME did not affect the carbonyl content and PK activity in cerebral cortex of rats. Co-administration of creatine plus pyruvate was effective in the prevention of alterations provoked by TME administration on the oxidative stress and the enzymes of phosphoryltransfer network, except in mitochondrial CK, AK, and SOD activities. These results indicate that chronic administration of TME may stimulate oxidative stress and alter the enzymes of phosphoryltransfer network in cerebral cortex of rats. In case this also occurs in the patients affected by these disorders, it may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias, and creatine and pyruvate supplementation could be beneficial to the patients.


Subject(s)
Cerebral Cortex/enzymology , Creatine/pharmacology , Oxidative Stress/physiology , Pyruvic Acid/pharmacology , Transferases/metabolism , Tyrosine/pharmacology , Animals , Cerebral Cortex/drug effects , Enzyme Activation/drug effects , Enzyme Activation/physiology , Male , Oxidative Stress/drug effects , Phosphorylation/drug effects , Phosphorylation/physiology , Rats , Rats, Wistar , Tyrosine/analogs & derivatives
2.
Mol Cell Biochem ; 380(1-2): 161-70, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23620342

ABSTRACT

ß-Alanine is a ß-amino acid derivative of the degradation of pyrimidine uracil and precursor of the oxidative substrate acetyl-coenzyme A (acetyl-CoA). The accumulation of ß-alanine occurs in ß-alaninemia, an inborn error of metabolism. Patients with ß-alaninemia may develop neurological abnormalities whose mechanisms are far from being understood. In this study we evaluated the effects of ß-alanine administration on some parameters of oxidative stress and on creatine kinase, pyruvate kinase, and adenylate kinase in cerebral cortex and cerebellum of 21-day-old rats. The animals received three peritoneal injections of ß-alanine (0.3 mg /g of body weight) and the controls received the same volume (10 µL/g of body weight) of saline solution (NaCl 0.85 %) at 3 h intervals. CSF levels of ß-alanine increased five times, achieving 80 µM in the rats receiving the amino acid. The results of ß-alanine administration in the parameters of oxidative stress were similar in both tissues studied: reduction of superoxide dismutase activity, increased oxidation of 2',7'-dihydrodichlorofluorescein, total content of sulfhydryl and catalase activity. However, the results of the phosphoryltransfer network enzymes were similar in all enzymes, but different in the tissues studied: the ß-alanine administration was able to inhibit the enzyme pyruvate kinase, cytosolic creatine kinase, and adenylate kinase activities in cerebral cortex, and increase in cerebellum. In case this also occurs in the patients, these results suggest that oxidative stress and alteration of the phosphoryltransfer network may be involved in the pathophysiology of ß-alaninemia. Moreover, the ingestion of ß-alanine to improve muscular performance deserves more attention in respect to possible side-effects.


Subject(s)
Cerebellum/drug effects , Cerebral Cortex/drug effects , Oxidative Stress/drug effects , Phosphotransferases/metabolism , beta-Alanine/pharmacology , Adenylate Kinase/metabolism , Animals , Catalase/metabolism , Cerebellum/metabolism , Cerebral Cortex/metabolism , Creatine Kinase/metabolism , Fluoresceins/metabolism , Humans , Male , Metabolism, Inborn Errors/blood , Oxidation-Reduction/drug effects , Pyruvate Kinase/metabolism , Rats , Rats, Wistar , Sulfhydryl Compounds/metabolism , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , beta-Alanine/blood , beta-Alanine/cerebrospinal fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...