Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Antioxidants (Basel) ; 13(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38671850

ABSTRACT

The use of Nigella damascena seeds in the culinary field or as aerial parts infusions in the pharmaceutical and cosmetic fields is widely reported. The biological activity of this plant, as demonstrated over the years, is closely related to its phytochemical content. This investigation focused on the comparative study of the same plants of N. damascena, one totally wild (WND), while the other two, one with white flowers (CWND) and the other with blue flowers (CBND), were subject to cultivation, irrigation, and manual weeding. Using the potential of 1D and 2D-NMR spectroscopy, coupled with MS/MS spectrometric studies, the three methanolic extracts of N. damascena were investigated. Chemical studies have highlighted the presence of triterpene saponin compounds and various glycosylated flavonoids. Finally, the in vitro antiproliferative and antioxidant activities of the three individual extracts were evaluated. The antiproliferative activity performed on U-937, HL-60, and MCF-7 tumor cell lines highlighted a greater anticancer effect of the CBND and CWND extracts compared to the data obtained using WND. The antioxidant activity, however, performed to quantify ROS generation is comparable among the extracts used.

2.
J Transl Med ; 21(1): 627, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37715252

ABSTRACT

BACKGROUND: Cancer cells are characterized by uncontrolled cell proliferation and impaired bioenergetics. Sirtuins are a family of highly conserved enzymes that play a fundamental role in energy metabolism regulation. SIRT1, in particular, drives many physiological stress responses and metabolic pathways following nutrient deprivation. We previously showed that SIRT1 activation using SCIC2.1 was able to attenuate genotoxic response and senescence. Here, we report that in hepatocellular carcinoma (HCC) cells under glucose-deprived conditions, SCIC2.1 treatment induced overexpression of SIRT1, SIRT3, and SIRT6, modulating metabolic response. METHODS: Flow cytometry was used to analyze the cell cycle. The MTT assay and xCELLigence system were used to measure cell viability and proliferation. In vitro enzymatic assays were carried out as directed by the manufacturer, and the absorbance was measured with an automated Infinite M1000 reader. Western blotting and immunoprecipitation were used to evaluate the expression of various proteins described in this study. The relative expression of genes was studied using real-time PCR. We employed a Seahorse XF24 Analyzer to determine the metabolic state of the cells. Oil Red O staining was used to measure lipid accumulation. RESULTS: SCIC2.1 significantly promoted mitochondrial biogenesis via the AMPK-p53-PGC1α pathway and enhanced mitochondrial ATP production under glucose deprivation. SIRT1 inhibition by Ex-527 further supported our hypothesis that metabolic effects are dependent on SIRT1 activation. Interestingly, SCIC2.1 reprogrammed glucose metabolism and fatty acid oxidation for bioenergetic circuits by repressing de novo lipogenesis. In addition, SCIC2.1-mediated SIRT1 activation strongly modulated antioxidant response through SIRT3 activation, and p53-dependent stress response via indirect recruitment of SIRT6. CONCLUSION: Our results show that SCIC2.1 is able to promote energy homeostasis, attenuating metabolic stress under glucose deprivation via activation of SIRT1. These findings shed light on the metabolic action of SIRT1 in the pathogenesis of HCC and may help determine future therapies for this and, possibly, other metabolic diseases.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Sirtuin 3 , Sirtuins , Humans , Liver Neoplasms/genetics , Sirtuin 1 , Carcinoma, Hepatocellular/genetics , Tumor Suppressor Protein p53 , Homeostasis , Sirtuins/genetics
3.
Nutrients ; 15(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447290

ABSTRACT

Natural products (NPs), broadly defined as chemicals produced by living organisms including microbes, marine organisms, animals, fungi and plants, are widely used as therapeutic agents for treating diseases and maintaining health and "wellness" [...].


Subject(s)
Biological Products , Animals , Humans , Biological Products/therapeutic use , Fungi/chemistry , Aquatic Organisms/chemistry
4.
Biomedicines ; 11(6)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37371719

ABSTRACT

Epigenetic mechanisms finely regulate gene expression and represent potential therapeutic targets. Cambinol is a synthetic heterocyclic compound that inhibits class III histone deacetylases known as sirtuins (SIRTs). The acetylating action that results could be crucial in modulating cellular functions via epigenetic regulations. The main aim of this research was to investigate the effects of cambinol, and its underlying mechanisms, on cell differentiation by combining wet experiments with bioinformatics analyses and molecular docking simulations. Our in vitro study evidenced the ability of cambinol to induce the differentiation in MCF-7, NB4, and 3T3-L1 cell lines. Interestingly, focusing on the latter that accumulated cytoplasmic lipid droplets, the first promising results related to the action mechanisms of cambinol have shown the induction of cell cycle-related proteins (such as p16 and p27) and modulation of the expression of Rb protein and nuclear receptors related to cell differentiation. Moreover, we explored the inhibitory mechanism of cambinol on human SIRT1 and 2 performing in silico molecular simulations by protein-ligand docking. Cambinol, unlike from other sirtuin inhibitors, is able to better interact with the substrate binding site of SIRT1 than with the inhibition site. Additionally, for SIRT2, cambinol partially interacts with the substrate binding site, although the inhibition site is preferred. Overall, our findings suggest that cambinol might contribute to the development of an alternative to the existing epigenetic therapies that modulate SIRTs.

5.
J Cardiovasc Transl Res ; 16(1): 17-30, 2023 02.
Article in English | MEDLINE | ID: mdl-35960497

ABSTRACT

Pathogenic DNA methylation changes may be involved in pulmonary arterial hypertension (PAH) onset and its progression, but there is no data on potential associations with patient-derived hemodynamic parameters. The reduced representation bisulfite sequencing (RRBS) platform identified N = 631 differentially methylated CpG sites which annotated to N = 408 genes (DMGs) in circulating CD4+ T cells isolated from PAH patients vs. healthy controls (CTRLs). A promoter-restricted network analysis established the PAH subnetwork that included 5 hub DMGs (SOCS3, GNAS, ITGAL, NCOR2, NFIC) and 5 non-hub DMGs (NR4A2, GRM2, PGK1, STMN1, LIMS2). The functional analysis revealed that the SOCS3 gene was the most recurrent among the top ten significant pathways enriching the PAH subnetwork, including the growth hormone receptor and the interleukin-6 signaling. Correlation analysis showed that the promoter methylation levels of each network-oriented DMG were associated individually with hemodynamic parameters. In particular, SOCS3 hypomethylation was negatively associated with right atrial pressure (RAP) and positively associated with cardiac index (CI) (|r|≥ 0.6). A significant upregulation of the SOCS3, ITGAL, NFIC, NCOR2, and PGK1 mRNA levels (qRT-PCR) in peripheral blood mononuclear cells from PAH patients vs. CTRLs was found (P ≤ 0.05). By immunoblotting, a significant upregulation of the SOCS3 protein was confirmed in PAH patients vs. CTRLs (P < 0.01). This is the first network-oriented study which integrates circulating CD4+ T cell DNA methylation signatures, hemodynamic parameters, and validation experiments in PAH patients at first diagnosis or early follow-up. Our data suggests that SOCS3 gene might be involved in PAH pathogenesis and serve as potential prognostic biomarker.


Subject(s)
Pulmonary Arterial Hypertension , Humans , Leukocytes, Mononuclear , Hemodynamics , DNA Methylation , T-Lymphocytes , CD4-Positive T-Lymphocytes , Suppressor of Cytokine Signaling 3 Protein
6.
Plants (Basel) ; 11(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36559642

ABSTRACT

The chemical profile of the essential oil (EO) of the aerial parts of Thymus leucotrichus var. creticus (Lamiaceae), a taxon not previously studied, was investigated by GC-MS analysis, using a DB-Wax polar column. Oxygenated monoterpenes and monoterpene hydrocarbons dominate the EO, with thymol (46.97%) and p-cymene (28.64%) as the main constituent of these two classes, respectively. The ability of the EO of T. leucotrichus to reduce Cd toxicity was studied in aquatic moss Leptodictyum riparium. To study EO-induced tolerance to Cd toxicity, apex growth, number of dead cells, DNA damage and antioxidant response in gametophytes were examined. The exogenous application of the EO yields a resumption of growth rate and a reduction in the number of dead cells; it also reduces the oxidative stress induced by Cd, as demonstrated by the reduction of the ROS content (with a decrease of 1.52% and 5%) and by the increased activity of antioxidant enzymes such as superoxide dismutase (SOD) (with an increase of 1.44% and 2.29%), CAT catalase (1.46% and 2.91%) and glutathione-S-transferase GST (1.57% and 1.90%). Furthermore, the application of the EO yields a reduction of DNA damage. These results clearly indicate the protective capacity of the EO of T. leucotrichus in modulating the redox state through the antioxidant pathway by reducing the oxidative stress induced by Cd.

7.
Phytochemistry ; 203: 113373, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35977603

ABSTRACT

The Stachys L. genus has been used in traditional medicine to treat skin inflammations, stomach disorders, and stress. The aim of this study was to investigate the chemical profile and biological activity of the methanolic extract of Stachys spreitzenhoferi Heldr. (Lamiaceae) aerial parts, collected on the island of Kythira, South Greece. The analysis by liquid chromatography coupled with electrospray ionization and high-resolution mass spectrometry [LC-(-)ESI/HRMSn] of the methanol extract revealed the occurrence of thirty-six compounds - flavonoids, phenylethanoid glycosides, iridoids, quinic acid derivatives, aliphatic alcohol glycosides, and oligosaccharides - highlighting the substantial presence, as main peaks, of the iridoid melittoside (2) along with flavonoid compounds such as 4'-O-methylisoscutellarein mono-acetyl-diglycoside/chrysoeriol mono-acetyl-diglycoside (24), trimethoxy- (35) and tetramethoxyflavones (36). This extract was tested for its antimicrobial properties against Gram-positive and negative pathogenic strains. The extract was not active against Gram-negative bacteria tested, but it possessed a good dose-dependent antimicrobial activity towards S. aureus (MIC: 1.0 mg/mL) and L. monocytogenes (MIC: 1.0 mg/mL) Gram-(+) strains. Furthermore, this extract has been tested for its possible antioxidant activity in vitro. In particular, it has been shown that these molecules cause a decrease in DPPH, ABTS, and H2O2 radicals. The extract of S. spreitzenhoferi exhibited anti-DPPH activity (IC50: 0.17 mg/mL), anti-H2O2 activity (IC50: 0.125 mg/mL), and promising antiradical effect with an IC50 value of 0.18 mg/mL for anti-ABTS activity. S. spreitzenhoferi extract caused a decrease in ROS (at the concentration of 200 µg/mL) and an increase in the activity of the antioxidant enzymes SOD, CAT, and GPX in OZ-stimulated PMNs. Furthermore, it exhibited antiproliferative activity against acute myeloid leukemia (U937 cell), causing 50% of cell death at the 0.75 mg/mL.


Subject(s)
Anti-Infective Agents , Lamiaceae , Stachys , Anti-Bacterial Agents , Antioxidants/chemistry , Antioxidants/pharmacology , Flavonoids/chemistry , Flavonoids/pharmacology , Glycosides/chemistry , Glycosides/pharmacology , Greece , Humans , Iridoids , Methanol , Plant Components, Aerial , Plant Extracts/chemistry , Plant Extracts/pharmacology , Quinic Acid , Reactive Oxygen Species , Stachys/chemistry , Staphylococcus aureus , Superoxide Dismutase , U937 Cells
8.
Oxid Med Cell Longev ; 2022: 3848084, 2022.
Article in English | MEDLINE | ID: mdl-35237379

ABSTRACT

Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.


Subject(s)
Anti-Allergic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Ellagic Acid/pharmacology , Hydrolyzable Tannins/pharmacology , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Polyphenols/pharmacology , Protective Agents/pharmacology , Animals , Anti-Allergic Agents/metabolism , Anti-Inflammatory Agents/metabolism , Antineoplastic Agents/metabolism , Ellagic Acid/metabolism , Fruit/chemistry , Fruit/metabolism , Gastrointestinal Tract/metabolism , Humans , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/metabolism , Hypoglycemic Agents/metabolism , Phytotherapy/methods , Plant Extracts/metabolism , Plants/chemistry , Plants/metabolism , Polyphenols/metabolism , Protective Agents/metabolism
9.
Epigenetics ; 17(5): 547-563, 2022 05.
Article in English | MEDLINE | ID: mdl-34151742

ABSTRACT

Acute coronary syndrome (ACS) is the most severe clinical manifestation of coronary heart disease.We performed an epigenome-wide analysis of circulating CD4+ and CD8+ T cells isolated from ACS patients and healthy subjects (HS), enrolled in the DIANA clinical trial, by reduced-representation bisulphite sequencing (RRBS). In CD4+ T cells, we identified 61 differentially methylated regions (DMRs) associated with 57 annotated genes (53% hyper- and 47% hypo-methylated) by comparing ACS patients vs HS. In CD8+ T cells, we identified 613 DMRs associated with 569 annotated genes (28% hyper- and 72% hypo-methylated) in ACS patients as compared to HS. In CD4+vs CD8+ T cells of ACS patients we identified 175 statistically significant DMRs associated with 157 annotated genes (41% hyper- and 59% hypo-methylated). From pathway analyses, we selected six differentially methylated hub genes (NFATC1, TCF7, PDGFA, PRKCB, PRKCZ, ABCA1) and assessed their expression levels by q-RT-PCR. We found an up-regulation of selected genes in ACS patients vs HS (P < 0.001). ABCA1, TCF7, PDGFA, and PRKCZ gene expression was positively associated with CK-MB serum concentrations (r = 0.75, P = 0.03; r = 0.760, P = 0.029; r = 0.72, P = 0.044; r = 0.74, P = 0.035, respectively).This pilot study is the first single-base resolution map of DNA methylome by RRBS in CD4+ and CD8+ T cells and provides specific methylation signatures to clarify the role of aberrant methylation in ACS pathogenesis, thus supporting future research for novel epigenetic-sensitive biomarkers in the prevention and early diagnosis of this pathology.


Subject(s)
Acute Coronary Syndrome , DNA Methylation , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Acute Coronary Syndrome/genetics , CD8-Positive T-Lymphocytes/metabolism , Epigenesis, Genetic , Humans , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Pilot Projects , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Transcription Factors/genetics
10.
Nutrients ; 13(8)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34444931

ABSTRACT

Over the centuries, humans have traditionally used garlic (Allium sativum L.) as a food ingredient (spice) and remedy for many diseases. To confirm this, many extensive studies recognized the therapeutic effects of garlic bulbs. More recently, black garlic (BG), made by heat-ageing white garlic bulbs, has increased its popularity in cuisine and traditional medicine around the world, but there is still limited information on its composition and potential beneficial effects. In this study, the metabolite profile of methanol extract of BG (BGE) was determined by high-performance liquid chromatography coupled to tandem mass spectrometry in high-resolution mode. Results allowed to establish that BGE major components were sulfur derivatives, saccharides, peptides, organic acids, a phenylpropanoid derivative, saponins, and compounds typical of glycerophospholipid metabolism. Characterization of the BGE action in cancer cells revealed that antioxidant, metabolic, and hepatoprotective effects occur upon treatment as well as induction of maturation of acute myeloid leukemia cells. These results are interesting from the impact point of view of BG consumption as a functional food for potential prevention of metabolic and tumor diseases.


Subject(s)
Garlic/chemistry , Leukemia, Myeloid, Acute/drug therapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/pharmacology , Chromatography, High Pressure Liquid/methods , Humans , Leukemia, Myeloid, Acute/pathology , Peptides/analysis , Plant Roots/chemistry , Polysaccharides/analysis , Saponins/analysis , Spices/analysis , Sulfur/analysis , Tandem Mass Spectrometry/methods , U937 Cells
11.
Vasc Health Risk Manag ; 17: 247-254, 2021.
Article in English | MEDLINE | ID: mdl-34079271

ABSTRACT

Despite the current reductionist approach providing an optimal indication for diagnosis and treatment of patients with heart failure with reduced ejection fraction (HFrEF), there are no standard pharmacological therapies for heart failure with preserved ejection fraction (HFpEF). Although in its infancy in cardiovascular diseases, the epigenetic-based therapy ("epidrugs") is capturing the interest of physician community. In fact, an increasing number of controlled clinical trials is evaluating the putative beneficial effects of: 1) direct epigenetic-oriented drugs, eg, apabetalone, and 2) repurposed drugs with a possible indirect epigenetic interference, eg, metformin, statins, sodium glucose transporter inhibitors 2 (SGLT2i), and omega 3 polyunsaturated fatty acids (PUFAs) in both HFrEF and HFpEF, separately. Apabetalone is the first and unique direct epidrug tested in cardiovascular patients to date, and the BETonMACE trial has reported a reduction in first HF hospitalization (any EF value) and cardiovascular death in patients with type 2 diabetes and recent acute coronary syndrome, suggesting a possible role in secondary prevention. Patients with HFpEF seem to benefit from supplementation to the standard therapy with statins, metformin, and SGLT2i owing to their ability in reducing mortality. In contrast, the vasodilator hydralazine, with or without isosorbide dinitrate, did not provide beneficial effects. In HFrEF, metformin and SGLT2i could reduce the risk of incident HF and mortality in affected patients whereas clinical trials based on statins provided mixed results. Furthermore, PUFAs diet supplementation was significantly associated with reduced cardiovascular risk in both HFpEF and HFrEF. Future large trials will reveal whether direct and indirect epitherapy will remain a work in progress or become a useful way to customize the therapy in the real-world management of HFpEF and HFrEF. Our goal is to discuss the recent advancement in the epitherapy as a possible way to improve personalized therapy of HF.


Subject(s)
Cardiovascular Agents/therapeutic use , Drug Repositioning , Epigenesis, Genetic/drug effects , Heart Failure/drug therapy , Quinazolinones/therapeutic use , Cardiovascular Agents/adverse effects , Heart Failure/genetics , Heart Failure/physiopathology , Humans , Quinazolinones/adverse effects , Treatment Outcome
12.
Biomedicines ; 8(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291755

ABSTRACT

Histone modifications through acetylation are fundamental for remodelling chromatin and consequently activating gene expression. The imbalance between acetylation and deacetylation activity causes transcriptional dysregulation associated with several disorders. Flavones, small molecules of plant origin, are known to interfere with class I histone deacetylase (HDAC) enzymes and to enhance acetylation, restoring cell homeostasis. To investigate the possible physical interactions of flavones on human HDAC1 and 2, we carried out in silico molecular docking simulations. Our data have revealed how flavone, and other two flavones previously investigated, i.e., apigenin and luteolin, can interact as ligands with HDAC1 and 2 at the active site binding pocket. Regulation of HDAC activity by dietary flavones could have important implications in developing epigenetic therapy to regulate the cell gene expression.

13.
Molecules ; 25(1)2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31935970

ABSTRACT

Plants produce a vast array of biomolecules with beneficial effects for human health. In this study, polyphenol and anthocyanin-rich extracts (PAE) from pigmented tubers of Solanum tuberosum L. varieties "Blue Star", "Magenta Love", and "Double Fun" in comparison with the more extensively studied "Vitelotte" were evaluated and compared for antiproliferative effects in human leukemia cells, and their phytochemical and genetic profiles were determined. In U937 cells, upon treatment with PAE, it was possible to reveal the expression of specific apoptotic players, such as caspase 8, 9, 3, and poly (ADP-ribose) polymerase (PARP), as well as the induction of monocyte and granulocyte differentiation. A liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) investigation revealed the presence of polyphenolic compounds in all the varieties of potatoes analyzed, among which caffeoyl and feruloyl quinic acid derivatives were the most abundant, as well as several acylated anthocyanins. Each pigmented variety was genotyped by DNA-based molecular markers, and flavonoid-related transcription factors were profiled in tubers in order to better characterize these outstanding resources and contribute to their exploitation in breeding. Interesting biological activities were observed for "Blue Star" and "Vitelotte" varieties with respect to the minor or no effect of the "Double Fun" variety.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Plant Tubers/chemistry , Polyphenols/chemistry , Solanum tuberosum/chemistry , Solanum tuberosum/genetics , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Genetic Profile , Genotype , Humans , Phytochemicals/chemistry , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization
14.
Clin Cancer Res ; 24(12): 2886-2900, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29535128

ABSTRACT

Purpose: Alteration in cell death is a hallmark of cancer. A functional role regulating survival, apoptosis, and necroptosis has been attributed to RIP1/3 complexes.Experimental Design: We have investigated the role of RIP1 and the effects of MC2494 in cell death induction, using different methods as flow cytometry, transcriptome analysis, immunoprecipitation, enzymatic assays, transfections, mutagenesis, and in vivo studies with different mice models.Results: Here, we show that RIP1 is highly expressed in cancer, and we define a novel RIP1/3-SIRT1/2-HAT1/4 complex. Mass spectrometry identified five acetylations in the kinase and death domain of RIP1. The novel characterized pan-SIRT inhibitor, MC2494, increases RIP1 acetylation at two additional sites in the death domain. Mutagenesis of the acetylated lysine decreases RIP1-dependent cell death, suggesting a role for acetylation of the RIP1 complex in cell death modulation. Accordingly, MC2494 displays tumor-selective potential in vitro, in leukemic blasts ex vivo, and in vivo in both xenograft and allograft cancer models. Mechanistically, MC2494 induces bona fide tumor-restricted acetylated RIP1/caspase-8-mediated apoptosis. Excitingly, MC2494 displays tumor-preventive activity by blocking 7,12-dimethylbenz(α)anthracene-induced mammary gland hyperproliferation in vivoConclusions: These preventive features might prove useful in patients who may benefit from a recurrence-preventive approach with low toxicity during follow-up phases and in cases of established cancer predisposition. Thus, targeting the newly identified RIP1 complex may represent an attractive novel paradigm in cancer treatment and prevention. Clin Cancer Res; 24(12); 2886-900. ©2018 AACR.


Subject(s)
Histone Acetyltransferases/metabolism , Multiprotein Complexes/metabolism , Neoplasms/metabolism , Nuclear Pore Complex Proteins/metabolism , RNA-Binding Proteins/metabolism , Sirtuins/metabolism , Acetylation , Animals , Antineoplastic Agents/pharmacology , Caspase 8/metabolism , Cell Death/drug effects , Cell Line, Tumor , Gene Expression , Histone Acetyltransferases/genetics , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Nuclear Pore Complex Proteins/genetics , Protein Binding , RNA-Binding Proteins/genetics , Signal Transduction/drug effects , Sirtuins/genetics
15.
Oncotarget ; 8(70): 115620-115631, 2017 12 29.
Article in English | MEDLINE | ID: mdl-29383186

ABSTRACT

Bisphenol A (BPA) belongs to the class of chemicals known as endocrine disruptors and has been also involved in the pathogenesis and progression of endocrine related cancer such as breast and prostate cancers. Here, we have investigated the effect of BPA in human prostate cancer LNCaP cells and in human non-transformed epithelial prostate EPN cells. Our data showed that BPA induces the down regulation of cyclin D1 expression and the upregulation of the cell cycle inhibitors p21 and p27, leading to cell cycle arrest. Interestingly, we found that the BPA anti-proliferative response depends on a strong and rapid activation of epidermal growth factor receptor (EGFR), which stimulates ERK-dependent pathway. This, in turn, induces expression of p53 and its phosphorylation on residue Ser15, which is responsible for cell cycle arrest. EGFR activation occurs upon a cross talk with androgen (AR) and estradiol receptor-ß (ERß) which are known to bind BPA. Altogether, these findings show a novel signaling pathway in which EGFR activation plays a key role on BPA-induced cell cycle inhibition through a pathway involving AR and ERß/EGFR complexes, ERK and p53. Our results provide new insights for understanding the molecular mechanisms in human prostate cancer. On the other, they could allow the development of new compounds that may be used to overcome human prostate cancer resistance to endocrine therapy in promising target therapeutic approaches.

16.
Int J Mol Sci ; 16(4): 7861-75, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25860944

ABSTRACT

Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus) Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) and B-cell lymphoma 2 (Bcl-2), and inducing Bcl-2-associated agonist of cell death (BAD) phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Cell Proliferation/drug effects , Emodin/analogs & derivatives , Lichens/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Emodin/chemistry , Emodin/pharmacology , Female , Humans , MCF-7 Cells , Plant Extracts/chemistry , Rhizoctonia/drug effects , Staphylococcus aureus/drug effects
17.
Food Chem Toxicol ; 73: 71-83, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25139119

ABSTRACT

The successful treatment of many human diseases, including cancer, has come to be considered a major challenge, as patient response to therapy is difficult to predict. Recently, considerable efforts are being focused on the development of new tools to meet the growing demand for personalized medicine. With few exceptions, synthetic compounds have been unable to meet initial expectations for their clinical use. The last twenty years have been characterized by the failure of several drugs in advanced clinical development, possibly due to the insufficient understanding of molecular pathways underlying their mechanism of action. Although the biodiversity of compounds found in nature has been poorly explored until now, the field of naturally occurring drugs is rapidly expanding. Here, we review the current knowledge on the use of natural compounds with particular emphasis on those that display a chromatin remodeling effect coupled with anticancer action.


Subject(s)
Biological Products/pharmacology , Epigenesis, Genetic
18.
Food Chem Toxicol ; 55: 304-12, 2013 May.
Article in English | MEDLINE | ID: mdl-23313609

ABSTRACT

Solanum tuberosum L. var. Vitelotte is a potato variety widely used for human consumption. The pigments responsible for its attractive color belong to the class of anthocyanins. The objectives of this study were to characterize and measure the concentration of anthocyanins in pigmented potatoes and to evaluate their antioxidant and antimicrobial activities and their anti-proliferative effects in solid and hematological cancer cell lines. Anthocyanins exert anti-bacterial activity against different bacterial strains and a slight activity against three fungal strains. The Gram-positive bacterium Staphylococcus aureus and the fungus Rhyzoctonia solani were the most affected microorganisms. Antioxidant activities were evaluated by DPPH and FRAP methods; the extract showed a higher reducing capability than anti-radical activity. Moreover, we found that in different cancer cell models the anthocyanins cause inhibition of proliferation and apoptosis in a dose dependent manner. These biological activities are likely due to the high content of malvidin 3-O-p-coumaroyl-rutinoside-5-O-glucoside and petunidin 3-O-p-coumaroyl-rutinoside-5-O-glucoside.


Subject(s)
Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Solanum tuberosum/chemistry , Cell Line , Humans , Microbial Sensitivity Tests
19.
J Transl Med ; 7: 48, 2009 Jun 18.
Article in English | MEDLINE | ID: mdl-19538739

ABSTRACT

BACKGROUND: BPA (bisphenol A or 2,2-bis(4-hydroxy-phenol)propane) is present in the manufacture of polycarbonate plastic and epoxy resins, which can be used in impact-resistant safety equipment and baby bottles, as protective coatings inside metal food containers, and as composites and sealants in dentistry. Recently, attention has focused on the estrogen-like and carcinogenic adverse effects of BPA. Thus, it is necessary to investigate the cytotoxicity and apoptosis-inducing activity of this compound. METHODS: Cell cycle, apoptosis and differentiation analyses; western blots. RESULTS: BPA is able to induce cell cycle arrest and apoptosis in three different acute myeloid leukemias. Although some granulocytic differentiation concomitantly occurred in NB4 cells upon BPA treatment, the major action was the induction of apoptosis. BPA mediated apoptosis was caspase dependent and occurred by activation of extrinsic and intrinsic cell death pathways modulating both FAS and TRAIL and by inducing BAD phosphorylation in NB4 cells. Finally, also non genomic actions such as the early decrease of both ERK and AKT phosphorylation were induced by BPA thus indicating that a complex intersection of regulations occur for the apoptotic action of BPA. CONCLUSION: BPA is able to induce apoptosis in leukemia cells via caspase activation and involvement of both intrinsic and extrinsic pathways of apoptosis.


Subject(s)
Apoptosis/drug effects , Free Radical Scavengers/pharmacology , Leukemia, Myeloid, Acute/pathology , Phenols/pharmacology , Benzhydryl Compounds , CD11c Antigen/metabolism , Caspases/metabolism , Cell Death/drug effects , Cell Differentiation/drug effects , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , HL-60 Cells , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , Time Factors , Tumor Cells, Cultured , bcl-Associated Death Protein/metabolism , fas Receptor/metabolism
20.
Fertil Steril ; 92(5): 1532-5, 2009 Nov.
Article in English | MEDLINE | ID: mdl-18930188

ABSTRACT

OBJECTIVE: To investigate whether CYP17 T>C polymorphism and polymorphisms C1558T and Val80 of CYP19 are related to endometriosis. DESIGN: Clinical study. PATIENT(S): Women affected with endometriosis (n = 104) and control group (n = 86). The diagnosis of endometriosis was confirmed by the histologic examination of the endometriotic lesions. RESULT(S): In patients affected with endometriosis, we observed that AA and CC genotypes were significantly represented in Val80 and C1558T polymorphisms of CYP19. CONCLUSION(S): The molecular mechanisms that underlie the development of endometriosis are unclear. Both environmental and genetic factors are involved in the pathogenesis of the disease. The inheritable susceptibility to endometriosis justifies the growing interest in identifying genes and/or genetic polymorphisms that predispose women to an increased risk of developing endometriosis. The identification of single-nucleotide polymorphism (SNP), probably linked to endometriosis, could help to explain its pathogenesis.


Subject(s)
Aromatase/genetics , Endometriosis/genetics , Ovarian Diseases/genetics , Polymorphism, Single Nucleotide , Steroid 17-alpha-Hydroxylase/genetics , Adolescent , Adult , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Middle Aged , Polymorphism, Single Nucleotide/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...