Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819400

ABSTRACT

PURPOSE: Estrogen Receptor (ER) alpha signaling is a known driver of ER-positive (ER+)/human epidermal growth factor receptor 2 negative (HER2-) breast cancer. Combining endocrine therapy (ET) such as fulvestrant with CDK4/6, mTOR or PI3K inhibitors is now a central strategy for the treatment of ER+ advanced breast cancer. However, suboptimal ER inhibition and resistance resulting from ESR1 mutation dictates that new therapies are needed. EXPERIMENTAL DESIGN: A medicinal chemistry campaign identified vepdegestrant (ARV-471), a selective, orally bioavailable, potent small molecule PROteolysis-TArgeting Chimera (PROTAC®) degrader of ER. We used biochemical and intracellular target engagement assays to demonstrate the mechanism of action of vepdegestrant, and ESR1 wild-type and mutant ER+ preclinical breast cancer models to demonstrate ER degradation-mediated tumor growth inhibition. RESULTS: Vepdegestrant induced ≥90% degradation of wild-type (WT) and mutant ER, inhibited ER-dependent breast cancer cell line proliferation in-vitro and achieved significant tumor growth inhibition (TGI) (87-123%) in MCF7 orthotopic xenograft models, better than the ET agent fulvestrant (31-80% TGI). In the hormone-independent ER Y537S patient derived xenograft (PDX) breast cancer model ST941/HI, vepdegestrant achieved tumor regressions and was similarly efficacious in the ST941/HI/PBR palbociclib-resistant model (102% TGI). Vepdegestrant induced robust tumor regressions in combination with each of the CDK4/6 inhibitors palbociclib, abemaciclib, and ribociclib, the mTOR inhibitor everolimus, and the PI3K inhibitors alpelisib and inavolisib. CONCLUSIONS: Vepdegestrant achieved greater ER degradation in-vivo compared to fulvestrant, which correlated with improved tumor growth inhibition, suggesting vepdegestrant could be a more effective backbone ET for patients with ER+/HER2- breast cancer.

2.
J Med Chem ; 67(2): 1262-1313, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38180485

ABSTRACT

The identification of VHL-binding proteolysis targeting chimeras (PROTACs) that potently degrade the BRM protein (also known as SMARCA2) in SW1573 cell-based experiments is described. These molecules exhibit between 10- and 100-fold degradation selectivity for BRM over the closely related paralog protein BRG1 (SMARCA4). They also selectively impair the proliferation of the H1944 "BRG1-mutant" NSCLC cell line, which lacks functional BRG1 protein and is thus highly dependent on BRM for growth, relative to the wild-type Calu6 line. In vivo experiments performed with a subset of compounds identified PROTACs that potently and selectively degraded BRM in the Calu6 and/or the HCC2302 BRG1 mutant NSCLC xenograft models and also afforded antitumor efficacy in the latter system. Subsequent PK/PD analysis established a need to achieve strong BRM degradation (>95%) in order to trigger meaningful antitumor activity in vivo. Intratumor quantitation of mRNA associated with two genes whose transcription was controlled by BRM (PLAU and KRT80) also supported this conclusion.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Proteolysis Targeting Chimera , Heterografts , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line , Lung Neoplasms/genetics , Transcription Factors/genetics , DNA Helicases/genetics , Nuclear Proteins/genetics
3.
Mol Ther Nucleic Acids ; 29: 625-642, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36090761

ABSTRACT

Tau is a microtubule-associated protein (MAPT, tau) implicated in the pathogenesis of tauopathies, a spectrum of neurodegenerative disorders characterized by accumulation of hyperphosphorylated, aggregated tau. Because tau pathology can be distinct across diseases, a pragmatic therapeutic approach may be to intervene at the level of the tau transcript, as it makes no assumptions to mechanisms of tau toxicity. Here we performed a large library screen of locked-nucleic-acid (LNA)-modified antisense oligonucleotides (ASOs), where careful tiling of the MAPT locus resulted in the identification of hot spots for activity in the 3' UTR. Further modifications to the LNA design resulted in the generation of ASO-001933, which selectively and potently reduces tau in primary cultures from hTau mice, monkey, and human neurons. ASO-001933 was well tolerated and produced a robust, long-lasting reduction in tau protein in both mouse and cynomolgus monkey brain. In monkey, tau protein reduction was maintained in brain for 20 weeks post injection and corresponded with tau protein reduction in the cerebrospinal fluid (CSF). Our results demonstrate that LNA-ASOs exhibit excellent drug-like properties and sustained efficacy likely translating to infrequent, intrathecal dosing in patients. These data further support the development of LNA-ASOs against tau for the treatment of tauopathies.

4.
PLoS One ; 12(12): e0187609, 2017.
Article in English | MEDLINE | ID: mdl-29261656

ABSTRACT

Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer's disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03-1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task.


Subject(s)
Paired-Associate Learning/drug effects , Quinuclidines/pharmacology , Space Perception/classification , Spiro Compounds/pharmacology , Thiophenes/pharmacology , Visual Perception/drug effects , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Donepezil , Indans/pharmacology , Macaca fascicularis , Male , Piperidines/pharmacology , Quinuclidines/chemistry , Reaction Time/drug effects , Scopolamine , Spiro Compounds/chemistry , Task Performance and Analysis , Thiophenes/chemistry , Treatment Outcome
5.
J Pharmacol Exp Ther ; 363(3): 377-393, 2017 12.
Article in English | MEDLINE | ID: mdl-28954811

ABSTRACT

(R)-3-((3S,4S)-3-fluoro-4-(4-hydroxyphenyl)piperidin-1-yl)-1-(4-methylbenzyl)pyrrolidin-2-one (BMS-986169) and the phosphate prodrug 4-((3S,4S)-3-fluoro-1-((R)-1-(4-methylbenzyl)-2-oxopyrrolidin-3-yl)piperidin-4-yl)phenyl dihydrogen phosphate (BMS-986163) were identified from a drug discovery effort focused on the development of novel, intravenous glutamate N-methyl-d-aspartate 2B receptor (GluN2B) negative allosteric modulators (NAMs) for treatment-resistant depression (TRD). BMS-986169 showed high binding affinity for the GluN2B subunit allosteric modulatory site (Ki = 4.03-6.3 nM) and selectively inhibited GluN2B receptor function in Xenopus oocytes expressing human N-methyl-d-aspartate receptor subtypes (IC50 = 24.1 nM). BMS-986169 weakly inhibited human ether-a-go-go-related gene channel activity (IC50 = 28.4 µM) and had negligible activity in an assay panel containing 40 additional pharmacological targets. Intravenous administration of BMS-986169 or BMS-986163 dose-dependently increased GluN2B receptor occupancy and inhibited in vivo [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine ([3H]MK-801) binding, confirming target engagement and effective cleavage of the prodrug. BMS-986169 reduced immobility in the mouse forced swim test, an effect similar to intravenous ketamine treatment. Decreased novelty suppressed feeding latency, and increased ex vivo hippocampal long-term potentiation was also seen 24 hours after acute BMS-986163 or BMS-986169 administration. BMS-986169 did not produce ketamine-like hyperlocomotion or abnormal behaviors in mice or cynomolgus monkeys but did produce a transient working memory impairment in monkeys that was closely related to plasma exposure. Finally, BMS-986163 produced robust changes in the quantitative electroencephalogram power band distribution, a translational measure that can be used to assess pharmacodynamic activity in healthy humans. Due to the poor aqueous solubility of BMS-986169, BMS-986163 was selected as the lead GluN2B NAM candidate for further evaluation as a novel intravenous agent for TRD.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Organophosphates/therapeutic use , Piperidines/therapeutic use , Prodrugs/therapeutic use , Pyrrolidinones/therapeutic use , Receptors, N-Methyl-D-Aspartate/metabolism , Administration, Intravenous , Allosteric Regulation , Animals , Antidepressive Agents/adverse effects , Antidepressive Agents/pharmacokinetics , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Brain Waves/drug effects , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Dissociative Disorders/chemically induced , Macaca fascicularis , Male , Memory, Short-Term/drug effects , Mice , Motor Activity/drug effects , Organophosphates/adverse effects , Organophosphates/pharmacokinetics , Piperidines/adverse effects , Piperidines/pharmacokinetics , Prodrugs/adverse effects , Prodrugs/pharmacokinetics , Pyrrolidinones/adverse effects , Pyrrolidinones/pharmacokinetics , Radioligand Assay , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Xenopus
6.
Neuropsychopharmacology ; 41(2): 568-77, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26105137

ABSTRACT

Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains.


Subject(s)
Cognition/drug effects , Cognition/physiology , Excitatory Amino Acid Antagonists/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , 2-Hydroxypropyl-beta-cyclodextrin , Animals , Bromine/pharmacology , Cognition Disorders/chemically induced , Cognition Disorders/metabolism , Cohort Studies , Drug Combinations , Glutamates/pharmacology , Ketamine/pharmacology , Macaca , Magnesium/pharmacology , Male , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Neuropsychological Tests , Phenethylamines/pharmacology , Piperidines/pharmacology , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Pyridines/pharmacology , Reaction Time , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Space Perception/drug effects , Space Perception/physiology , beta-Cyclodextrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...