Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect ; : 106218, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950866

ABSTRACT

OBJECTIVES: Children are generally considered main drivers of transmission for respiratory viruses, but the emergence of SARS-CoV-2 challenged this paradigm. Human rhinovirus (RV) continued to co-circulate throughout the pandemic, allowing for direct comparison of age-specific infectivity and susceptibility within households between these viruses during a time of low SARS-CoV-2 population immunity. METHODS: Households with children were prospectively monitored for ≥23 weeks between August 2020 and July 2021. Upon onset of respiratory symptoms in a household, an outbreak study was initiated, including questionnaires and repeated nasal self-sampling in all household members. Swabs were tested by PCR. Age-stratified within-household secondary attack rates (SARs) were compared between SARS-CoV-2 and RV. RESULTS: 307 households participated including 582 children and 627 adults. Overall SAR was lower for SARS-CoV-2 than for RV (aOR 0.55) and age-distributions differed between both viruses (p<0.001). Following household exposure, children were significantly less likely to become infected with SARS-CoV-2 compared to RV (aOR 0.16), whereas this was opposite in adults (aOR 1.71). CONCLUSION: In households, age-specific susceptibility to SARS-CoV-2 and RV differs and drives differences in household transmission between these pathogens. This highlights the importance of characterizing age-specific transmission risks, particularly for emerging infections, to guide appropriate infection control interventions.

2.
PLoS Comput Biol ; 20(1): e1011832, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38285727

ABSTRACT

Household studies provide an efficient means to study transmission of infectious diseases, enabling estimation of susceptibility and infectivity by person-type. A main inclusion criterion in such studies is usually the presence of an infected person. This precludes estimation of the hazards of pathogen introduction into the household. Here we estimate age- and time-dependent household introduction hazards together with within household transmission rates using data from a prospective household-based study in the Netherlands. A total of 307 households containing 1,209 persons were included from August 2020 until March 2021. Follow-up of households took place between August 2020 and August 2021 with maximal follow-up per household mostly limited to 161 days. Almost 1 out of 5 households (59/307) had evidence of an introduction of SARS-CoV-2. We estimate introduction hazards and within-household transmission rates in our study population with penalized splines and stochastic epidemic models, respectively. The estimated hazard of introduction of SARS-CoV-2 in the households was lower for children (0-12 years) than for adults (relative hazard: 0.62; 95%CrI: 0.34-1.0). Estimated introduction hazards peaked in mid October 2020, mid December 2020, and mid April 2021, preceding peaks in hospital admissions by 1-2 weeks. Best fitting transmission models included increased infectivity of children relative to adults and adolescents, such that the estimated child-to-child transmission probability (0.62; 95%CrI: 0.40-0.81) was considerably higher than the adult-to-adult transmission probability (0.12; 95%CrI: 0.057-0.19). Scenario analyses indicate that vaccination of adults can strongly reduce household infection attack rates and that adding adolescent vaccination offers limited added benefit.


Subject(s)
COVID-19 , Epidemics , Adult , Adolescent , Humans , SARS-CoV-2 , Prospective Studies , COVID-19/epidemiology , Family Characteristics
3.
medRxiv ; 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37333399

ABSTRACT

Household studies provide an efficient means to study transmission of infectious diseases, enabling estimation of individual susceptibility and infectivity. A main inclusion criterion in such studies is often the presence of an infected person. This precludes estimation of the hazards of pathogen introduction into the household. Here we use data from a prospective household-based study to estimate SARS-CoV-2 age- and time-dependent household introduction hazards together with within household transmission rates in the Netherlands from August 2020 to August 2021. Introduction hazards and within-household transmission rates are estimated with penalized splines and stochastic epidemic models, respectively. The estimated hazard of introduction of SARS-CoV-2 in the households was lower for children (0-12 years) than for adults (relative hazard: 0.62; 95%CrI: 0.34-1.0). Estimated introduction hazards peaked in mid October 2020, mid December 2020, and mid April 2021, preceding peaks in hospital admissions by 1-2 weeks. The best fitting transmission models include increased infectivity of children relative to adults and adolescents, such that the estimated child-to-child transmission probability (0.62; 95%CrI: 0.40-0.81) was considerably higher than the adult-to-adult transmission probability (0.12; 95%CrI: 0.057-0.19). Scenario analyses show that vaccination of adults could have strongly reduced infection attack rates in households and that adding adolescent vaccination would have offered limited added benefit.

4.
JAMA Netw Open ; 5(10): e2237522, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36264578

ABSTRACT

Importance: In the early COVID-19 pandemic, SARS-CoV-2 testing was only accessible and recommended for symptomatic persons or adults. This restriction hampered assessment of the true incidence of SARS-CoV-2 infection in children as well as detailed characterization of the SARS-CoV-2 disease spectrum and how this spectrum compared with that of other common respiratory illnesses. Objective: To estimate the community incidence of SARS-CoV-2 infection in children and parents and to assess the symptoms and symptom severity of respiratory illness episodes involving SARS-CoV-2-positive test results relative to those with SARS-CoV-2-negative test results. Design, Setting, and Participants: This cohort study randomly selected Dutch households with at least 1 child younger than 18 years. A total of 1209 children and adults from 307 households were prospectively followed up between August 25, 2020, and July 29, 2021, covering the second and third waves of the COVID-19 pandemic. Participation included SARS-CoV-2 screening at 4- to 6-week intervals during the first 23 weeks of participation (core study period; August 25, 2020, to July 29, 2021). Participants in all households finishing the core study before July 1, 2021, were invited to participate in the extended follow-up and to actively report respiratory symptoms using an interactive app until July 1, 2021. At new onset of respiratory symptoms or a SARS-CoV-2 positive test result, a household outbreak study was initiated, which included daily symptom recording, repeated polymerase chain reaction testing (nose-throat swabs and saliva and fecal samples), and SARS-CoV-2 antibody measurement (paired dried blood spots) in all household members. Outbreaks, households, and episodes of respiratory illness were described as positive or negative depending on SARS-CoV-2 test results. Data on participant race and ethnicity were not reported because they were not uniformly collected in the original cohorts and were therefore not representative or informative. Exposures: SARS-CoV-2-positive and SARS-CoV-2-negative respiratory illness episodes. Main Outcomes and Measures: Age-stratified incidence rates, symptoms, and symptom severity for SARS-CoV-2-positive and SARS-CoV-2-negative respiratory illness episodes. Results: Among 307 households including 1209 participants (638 female [52.8%]; 403 [33.3%] aged <12 years, 179 [14.8%] aged 12-17 years, and 627 [51.9%] aged ≥18 years), 183 household outbreaks of respiratory illness were observed during the core study and extended follow-up period, of which 63 (34.4%) were SARS-CoV-2 positive (59 outbreaks [32.2%] during the core study and 4 outbreaks [2.2%] during follow-up). SARS-CoV-2 incidence was similar across all ages (0.24/person-year [PY]; 95% CI, 0.21-0.28/PY). Overall, 33 of 134 confirmed SARS-CoV-2 episodes (24.6%) were asymptomatic. The incidence of SARS-CoV-2-negative respiratory illness episodes was highest in children younger than 12 years (0.94/PY; 95% CI, 0.89-0.97/PY). When comparing SARS-CoV-2-positive vs SARS-CoV-2-negative respiratory illness episodes in children younger than 12 years, no differences were observed in number of symptoms (median [IQR], 2 [2-4] for both groups), symptom severity (median [IQR] maximum symptom severity score, 6 [4-9] vs 7 [6-13]), or symptom duration (median [IQR], 6 [5-12] days vs 8 [4-13] days). However, among adults, SARS-CoV-2-positive episodes had a significantly higher number (median [IQR], 6 [4-8] vs 3 [2-4]), severity (median [IQR] maximum symptom severity score, 15 [9-19] vs 7 [6-11]), and duration (median [IQR] 13 [8-29] days vs 5 [3-11] days; P < .001 for all comparisons) of symptoms vs SARS-CoV-2-negative episodes. Conclusions and Relevance: In this cohort study, during the first pandemic year when mostly partial or full in-person learning occurred, the SARS-CoV-2 incidence rate in children was substantially higher than estimated from routine testing or seroprevalence data and was similar to that of adult household members. Unlike in unvaccinated adults, SARS-CoV-2 symptoms and symptom severity in children were similar to other common respiratory illnesses. These findings may prove useful when developing pediatric COVID-19 vaccine recommendations.


Subject(s)
COVID-19 , Adolescent , Adult , Child , Female , Humans , Cohort Studies , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , COVID-19 Vaccines , Pandemics , Parents , SARS-CoV-2 , Seroepidemiologic Studies , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...