Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Circulation ; 149(22): 1729-1748, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38487879

ABSTRACT

BACKGROUND: Myocardial infarction (MI) and heart failure are associated with an increased incidence of cancer. However, the mechanism is complex and unclear. Here, we aimed to test our hypothesis that cardiac small extracellular vesicles (sEVs), particularly cardiac mesenchymal stromal cell-derived sEVs (cMSC-sEVs), contribute to the link between post-MI left ventricular dysfunction (LVD) and cancer. METHODS: We purified and characterized sEVs from post-MI hearts and cultured cMSCs. Then, we analyzed cMSC-EV cargo and proneoplastic effects on several lines of cancer cells, macrophages, and endothelial cells. Next, we modeled heterotopic and orthotopic lung and breast cancer tumors in mice with post-MI LVD. We transferred cMSC-sEVs to assess sEV biodistribution and its effect on tumor growth. Finally, we tested the effects of sEV depletion and spironolactone treatment on cMSC-EV release and tumor growth. RESULTS: Post-MI hearts, particularly cMSCs, produced more sEVs with proneoplastic cargo than nonfailing hearts did. Proteomic analysis revealed unique protein profiles and higher quantities of tumor-promoting cytokines, proteins, and microRNAs in cMSC-sEVs from post-MI hearts. The proneoplastic effects of cMSC-sEVs varied with different types of cancer, with lung and colon cancers being more affected than melanoma and breast cancer cell lines. Post-MI cMSC-sEVs also activated resting macrophages into proangiogenic and protumorigenic states in vitro. At 28-day follow-up, mice with post-MI LVD developed larger heterotopic and orthotopic lung tumors than did sham-MI mice. Adoptive transfer of cMSC-sEVs from post-MI hearts accelerated the growth of heterotopic and orthotopic lung tumors, and biodistribution analysis revealed accumulating cMSC-sEVs in tumor cells along with accelerated tumor cell proliferation. sEV depletion reduced the tumor-promoting effects of MI, and adoptive transfer of cMSC-sEVs from post-MI hearts partially restored these effects. Finally, spironolactone treatment reduced the number of cMSC-sEVs and suppressed tumor growth during post-MI LVD. CONCLUSIONS: Cardiac sEVs, specifically cMSC-sEVs from post-MI hearts, carry multiple protumorigenic factors. Uptake of cMSC-sEVs by cancer cells accelerates tumor growth. Treatment with spironolactone significantly reduces accelerated tumor growth after MI. Our results provide new insight into the mechanism connecting post-MI LVD to cancer and propose a translational option to mitigate this deadly association.


Subject(s)
Extracellular Vesicles , Heart Failure , Myocardial Infarction , Animals , Extracellular Vesicles/metabolism , Heart Failure/metabolism , Heart Failure/pathology , Heart Failure/etiology , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Mice , Humans , Female , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Cell Line, Tumor , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Male , Cell Proliferation/drug effects
2.
iScience ; 25(8): 104653, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35958027

ABSTRACT

The extracellular RNA communication consortium (ERCC) is an NIH-funded program aiming to promote the development of new technologies, resources, and knowledge about exRNAs and their carriers. After Phase 1 (2013-2018), Phase 2 of the program (ERCC2, 2019-2023) aims to fill critical gaps in knowledge and technology to enable rigorous and reproducible methods for separation and characterization of both bulk populations of exRNA carriers and single EVs. ERCC2 investigators are also developing new bioinformatic pipelines to promote data integration through the exRNA atlas database. ERCC2 has established several Working Groups (Resource Sharing, Reagent Development, Data Analysis and Coordination, Technology Development, nomenclature, and Scientific Outreach) to promote collaboration between ERCC2 members and the broader scientific community. We expect that ERCC2's current and future achievements will significantly improve our understanding of exRNA biology and the development of accurate and efficient exRNA-based diagnostic, prognostic, and theranostic biomarker assays.

3.
Cell Rep ; 38(9): 110443, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35235806

ABSTRACT

The shedding of extracellular vesicles (EVs) represents an important but understudied means of cell-cell communication in cancer. Among the currently described classes of EVs, tumor-derived microvesicles (TMVs) comprise a class of vesicles released directly from the cell surface. TMVs contain abundant cargo, including functional proteins and miRNA, which can be transferred to and alter the behavior of recipient cells. Here, we document that a fraction of extracellular double-stranded DNA (dsDNA) is enclosed within TMVs and protected from nuclease degradation. dsDNA inclusion in TMVs is regulated by ARF6 cycling and occurs with the cytosolic DNA sensor, cGAS, but independent of amphisome or micronuclei components. Our studies suggest that dsDNA is trafficked to TMVs via a mechanism distinct from the multivesicular body-dependent secretion reported for the extracellular release of cytosolic DNA. Furthermore, TMV dsDNA can be transferred to recipient cells with consequences to recipient cell behavior, reinforcing its relevance in mediating cell-cell communication.


Subject(s)
Cell-Derived Microparticles , Extracellular Vesicles , MicroRNAs , Neoplasms , Cell-Derived Microparticles/metabolism , DNA/metabolism , Extracellular Vesicles/metabolism , Humans , MicroRNAs/metabolism , Neoplasms/metabolism
5.
Nat Cell Biol ; 23(12): 1217-1219, 2021 12.
Article in English | MEDLINE | ID: mdl-34887514
6.
Dev Cell ; 55(2): 111-113, 2020 10 26.
Article in English | MEDLINE | ID: mdl-33108750

ABSTRACT

Intercellular communication is vital to tumor progression. In this issue of Developmental Cell, Bertolini et al. (2020) describe how small extracellular vesicles released from hypoxic mammary tumor cells facilitate intercellular communication, leading to alterations in mitochondrial dynamics and acquisition of invasive phenotypes in normal epithelial cells.


Subject(s)
Extracellular Vesicles , Tumor Microenvironment , Cell Communication , Humans , Mitochondrial Dynamics , Oxygen
7.
Adv Exp Med Biol ; 1259: 155-170, 2020.
Article in English | MEDLINE | ID: mdl-32578176

ABSTRACT

Extracellular vesicle (EV) shedding is a biologically conserved cellular process across virtually every cell type. In cancer, EVs shed from tumor and stromal cells to the tumor microenvironment play a major role in determining tumor fate, which to a large extent is dictated by the biologically active cargo contained in EVs. Current understanding of various cancer-associated EVs has enabled the outlining of mechanistic connections between cargo and tumor-promoting functions. In this chapter, we describe examples of EV-mediated communication between tumor cells and stromal cells, highlighting the molecular constituents responsible for pro-tumorigenic effects. Furthermore, we discuss the roles of matrix-degrading EVs in cell invasion. Finally, we summarize research on the potential use of EVs as a novel approach to cancer therapeutics.


Subject(s)
Extracellular Vesicles , Neoplasms/pathology , Tumor Microenvironment , Humans , Neoplasms/therapy , Stromal Cells
8.
BMC Genomics ; 20(1): 14, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30616504

ABSTRACT

BACKGROUND: Circadian clocks are found in nearly all organisms, from bacteria to mammals, and ensure that behavioral and physiological processes occur at optimal times of day and in the correct temporal order. It is becoming increasingly clear that chronic circadian misalignment (CCM), such as occurs in shift workers or as a result of aberrant sleeping and eating schedules common to modern society, has profound metabolic and cognitive consequences, but the proximate mechanisms connecting CCM with reduced organismal health are unknown. Furthermore, it has been difficult to disentangle whether the health effects are directly induced by misalignment or are secondary to the alterations in sleep and activity levels that commonly occur with CCM. Here, we investigated the consequences of CCM in the powerful model system of the fruit fly, Drosophila melanogaster. We subjected flies to daily 4-h phase delays in the light-dark schedule and used the Drosophila Activity Monitoring (DAM) system to continuously track locomotor activity and sleep while simultaneously monitoring fly lifespan. RESULTS: Consistent with previous results, we find that exposing flies to CCM leads to a ~ 15% reduction in median lifespan in both male and female flies. Importantly, we demonstrate that the reduced longevity occurs independent of changes in overall sleep or activity. To uncover potential molecular mechanisms of CCM-induced reduction in lifespan, we conducted whole body RNA-sequencing to assess differences in gene transcription between control and misaligned flies. CCM caused progressive, large-scale changes in gene expression characterized by upregulation of genes involved in response to toxic substances, aging and oxidative stress, and downregulation of genes involved in regulation of development and differentiation, gene expression and biosynthesis. CONCLUSIONS: Many of these gene expression changes mimic those that occur during natural aging, consistent with the idea that CCM results in premature organismal decline, however, we found that genes involved in lipid metabolism are overrepresented among those that are differentially regulated by CCM and aging. This category of genes is also among the earliest to exhibit CCM-induced changes in expression, thus highlighting altered lipid metabolism as a potentially important mediator of the negative health consequences of CCM.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Longevity/genetics , Sleep Disorders, Circadian Rhythm/genetics , Animals , Circadian Clocks/physiology , Circadian Rhythm/physiology , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Feeding Behavior/physiology , Female , Locomotion/genetics , Longevity/physiology , Male , Oxidative Stress , Shift Work Schedule , Sleep Disorders, Circadian Rhythm/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...