Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Ecol Evol ; 8(12): 6253-6264, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29988446

ABSTRACT

The mountain pine beetle (Dendroctonus ponderosae) is an insect native to western North America; however, its geographical range has recently expanded north in BC and east into Alberta. To understand the population structure in the areas of expansion, 16 gene-linked microsatellites were screened and compared to neutral microsatellites using outlier analyses of Fst and Fct values. One sex-linked gene, inhibitor of apoptosis (IAP), showed a strong signature of positive selection for neo-X alleles and was analyzed for evidence of adaptive variation. Alleles of IAP were sequenced, and differences between the neo-X and neo-Y alleles were consistent with neutral evolution suggesting that the neo-Y allele may not be under functional constraints. Neo-Y alleles were amplified from gDNA, but not effectively from cDNA, suggesting that there was little IAP expression from neo-Y alleles. There were no differences in overall IAP expression between males and females with the common northern neo-X allele suggesting that the neo-X allele in males compensates for the reduced expression of neo-Y alleles. However, males lacking the most common northern neo-X allele thought to be selected for in northern populations had reduced overall IAP expression in early October-at a time when beetles are preparing for overwintering. This suggests that the most common allele may have more rapid upregulation. The reduced function of neo-Y alleles of IAP suggested by both sequence differences and lower levels of expression may foster a highly selective environment for neo-X alleles such as the common northern allele with more efficient upregulation.

2.
Mol Ecol ; 26(7): 2077-2091, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28231417

ABSTRACT

Bark beetles form multipartite symbiotic associations with blue stain fungi (Ophiostomatales, Ascomycota). These fungal symbionts play an important role during the beetle's life cycle by providing nutritional supplementation, overcoming tree defences and modifying host tissues to favour brood development. The maintenance of stable multipartite symbioses with seemingly less competitive symbionts in similar habitats is of fundamental interest to ecology and evolution. We tested the hypothesis that the coexistence of three fungal species associated with the mountain pine beetle is the result of niche partitioning and adaptive radiation using SNP genotyping coupled with genotype-environment association analysis and phenotypic characterization of growth rate under different temperatures. We found that genetic variation and population structure within each species is best explained by distinct spatial and environmental variables. We observed both common (temperature seasonality and the host species) and distinct (drought, cold stress, precipitation) environmental and spatial factors that shaped the genomes of these fungi resulting in contrasting outcomes. Phenotypic intraspecific variations in Grosmannia clavigera and Leptographium longiclavatum, together with high heritability, suggest potential for adaptive selection in these species. By contrast, Ophiostoma montium displayed narrower intraspecific variation but greater tolerance to extreme high temperatures. Our study highlights unique phenotypic and genotypic characteristics in these symbionts that are consistent with our hypothesis. By maintaining this multipartite relationship, the bark beetles have a greater likelihood of obtaining the benefits afforded by the fungi and reduce the risk of being left aposymbiotic. Complementarity among species could facilitate colonization of new habitats and survival under adverse conditions.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Coleoptera/microbiology , Ophiostomatales/genetics , Symbiosis , Animals , DNA, Fungal/genetics , Ecosystem , Environment , Gene Frequency , Genetics, Population , Genomics , Phenotype , Polymorphism, Single Nucleotide
3.
Ecol Evol ; 6(17): 6292-300, 2016 09.
Article in English | MEDLINE | ID: mdl-27648243

ABSTRACT

Assessments of population genetic structure and demographic history have traditionally been based on neutral markers while explicitly excluding adaptive markers. In this study, we compared the utility of putatively adaptive and neutral single-nucleotide polymorphisms (SNPs) for inferring mountain pine beetle population structure across its geographic range. Both adaptive and neutral SNPs, and their combination, allowed range-wide structure to be distinguished and delimited a population that has recently undergone range expansion across northern British Columbia and Alberta. Using an equal number of both adaptive and neutral SNPs revealed that adaptive SNPs resulted in a stronger correlation between sampled populations and inferred clustering. Our results suggest that adaptive SNPs should not be excluded prior to analysis from neutral SNPs as a combination of both marker sets resulted in better resolution of genetic differentiation between populations than either marker set alone. These results demonstrate the utility of adaptive loci for resolving population genetic structure in a nonmodel organism.

4.
Mol Biol Evol ; 31(7): 1803-15, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24803641

ABSTRACT

The mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins), a major pine forest pest native to western North America, has extended its range north and eastward during an ongoing outbreak. Determining how the MPB has expanded its range to breach putative barriers, whether physical (nonforested prairie and high elevation of the Rocky Mountains) or climatic (extreme continental climate where temperatures can be below -40 °C), may contribute to our general understanding of range changes as well as management of the current epidemic. Here, we use a panel of 1,536 single nucleotide polymorphisms (SNPs) to assess population genetic structure, connectivity, and signals of selection within this MPB range expansion. Biallelic SNPs in MPB from southwestern Canada revealed higher genetic differentiation and lower genetic connectivity than in the northern part of its range. A total of 208 unique SNPs were identified using different outlier detection tests, of which 32 returned annotations for products with putative functions in cholesterol synthesis, actin filament contraction, and membrane transport. We suggest that MPB has been able to spread beyond its previous range by adjusting its cellular and metabolic functions, with genome scale differentiation enabling populations to better withstand cooler climates and facilitate longer dispersal distances. Our study is the first to assess landscape-wide selective adaptation in an insect. We have shown that interrogation of genomic resources can identify shifts in genetic diversity and putative adaptive signals in this forest pest species.


Subject(s)
Coleoptera/genetics , Genetic Variation , Adaptation, Biological , Alleles , Animals , Canada , Coleoptera/physiology , Forests , Gene Frequency , Genome, Insect , Polymorphism, Single Nucleotide , Selection, Genetic
5.
J Chem Ecol ; 39(7): 1003-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23807433

ABSTRACT

Bark beetles encounter a diverse array of constitutive and rapidly induced terpenes when attempting to colonize living conifers. Concentrations of these compounds at entry sites can rapidly reach levels toxic to beetles, their brood, and fungal symbionts. Large numbers of beetles can overwhelm tree defenses via pheromone-mediated mass attacks, but the mechanisms are poorly understood. We show that bacteria associated with mountain pine beetles can metabolize monoterpenes and diterpene acids. The abilities of different symbionts to reduce concentrations of different terpenes appear complementary. Serratia reduced concentrations of all monoterpenes applied to media by 55-75 %, except for α-pinene. Beetle-associated Rahnella reduced (-)- and (+)-α-pinene by 40 % and 45 %, respectively. Serratia and Brevundimonas reduced diterpene abietic acid levels by 100 % at low concentrations. However, high concentrations exhausted this ability, suggesting that opposing rates of bacterial metabolism and plant induction of terpenes are critical. The two major fungal symbionts of mountain pine beetle, Grosmannia clavigera and Ophiostoma montium were highly susceptible to abietic acid. Grosmannia clavigera did not reduce total monoterpene concentrations in lodgepole pine turpentine. We propose the ability of bark beetles to exert landscape-scale impacts may arise partly from micro-scale processes driven by bacterial symbionts.


Subject(s)
Coleoptera/microbiology , Diterpenes/metabolism , Monoterpenes/metabolism , Pseudomonas/metabolism , Rahnella/metabolism , Serratia marcescens/metabolism , Animals , Tracheophyta/metabolism , Trees/metabolism
6.
J Chem Ecol ; 37(8): 808-17, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21710365

ABSTRACT

Bark beetles that colonize living conifers and their microbial associates encounter constitutive and induced chemical defenses of their host. Monoterpene hydrocarbons comprise a major component of these allelochemicals, and many are antibiotic to insects, fungi, and bacteria. Some bark beetle species exhaust these defenses by killing their host through mass attacks mediated by aggregation pheromones. Others lack adult aggregation pheromones and do not engage in pheromone-mediated mass attacks, but rather have the ability to complete development within live hosts. In the former species, the larvae develop in tissue largely depleted of host terpenes, whereas in the latter exposure to these compounds persists throughout development. A substantial literature exists on how monoterpenes affect bark beetles and their associated fungi, but little is known of how they affect bacteria, which in turn can influence beetle performance in various manners. We tested several bacteria from two bark beetle species for their ability to grow in the presence of a diversity of host monoterpenes. Bacteria were isolated from the mountain pine beetle, Dendroctonus ponderosae Hopkins, which typically kills trees during colonization, and the red turpentine beetle, Dendroctonus valens LeConte, which often lives in their host without causing mortality. Bacteria from D. ponderosae were gram-positive Actinobacteria and Bacilli; one yeast also was tested. Bacteria from D. valens were Actinobacteria, Bacilli, and γ-Proteobacteria. Bacteria from D. valens were more tolerant of monoterpenes than were those from D. ponderosae. Bacteria from D. ponderosae did not grow in the presence of α-pinene and 3-carene, and grew in, but were inhibited by, ß-pinene and ß-phellandrene. Limonene and myrcene had little inhibitory effect on bacteria from either beetle species. Tolerance to these antibiotic compounds appears to have resulted from adaptation to living in a terpene-rich environment.


Subject(s)
Bacterial Physiological Phenomena , Coleoptera/microbiology , Host-Parasite Interactions , Monoterpenes/metabolism , Plant Bark/parasitology , Trees/parasitology , Animals , Bacteria/growth & development , Bacteria/isolation & purification , Plant Bark/metabolism , Trees/metabolism
7.
Environ Entomol ; 37(1): 150-61, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18348806

ABSTRACT

Host location by parasitoids and dipteran predators of bark beetles is poorly understood. Unlike coleopteran predators that locate prey by orienting to prey pheromones, wasps and flies often attack life stages not present until after pheromone production ceases. Bark beetles have important microbial symbionts, which could provide sources of cues. We tested host trees, trees colonized by beetles and symbionts, and trees colonized by symbionts alone for attractiveness to hymenopteran parasitoids and dipteran predators. Field studies were conducted with Ips pini in Montana. Three pteromalid wasps were predominant. All were associated with the second and third instars of I. pini. Heydenia unica was more attracted to logs colonized by either I. pini or the fungus Ophiostoma ips than logs alone or blank controls (screen with no log). Rhopalicus pulchripennis was more attracted to logs colonized by I. pini than logs alone or blank controls. Dibrachys cavus was attracted to logs but did not distinguish whether or not they were colonized. Two dolichopodid predators were predominant. A Medetera species was more attracted to colonized than uncolonized logs and more attracted to logs than blank controls. It was also more attracted to logs colonized with the yeast Pichia scolyti than uncolonized logs, but attraction was less consistent. An unidentified dolichopodid was more attracted to logs colonized with I. pini, O. ips, and the bacteria Burkholderia sp., than to uncolonized logs. It was also attracted to uncolonized logs. Its responses were less consistent and pronounced than H. unica. These results suggest some parasitoids and dipteran predators exploit microbial symbionts of bark beetles to locate hosts. Overall, specialists showed strong attraction to fungal cues, whereas generalists were more attracted by plant volatiles. These results also show how microbial symbionts can have conflicting effects on host fitness.


Subject(s)
Coleoptera/microbiology , Diptera/physiology , Ecosystem , Predatory Behavior/physiology , Wasps/physiology , Animals , Ascomycota/physiology , Burkholderia/physiology , Coleoptera/physiology , Female , Larva/physiology , Male , Odorants , Pichia/physiology , Population Density , Random Allocation , Seasons , Symbiosis/physiology , Trees/microbiology , Trees/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...