Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 9(3): e0209421, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34908451

ABSTRACT

Bradyrhizobium is an endophytic bacterium under investigation as an efficient biofertilizer for sustainable legume-rice rotational cropping system. Monitoring and bio-imaging of this nitrogen fixing bacterium is essential for the study of plant-microbe evolution, soil microbiome, as well as quality control in organic farming. While phage display antibody technology has been widely used to generate recombinant antibody for myriad medical purposes, so far, this technology has been minimally applied in the agricultural sector. In this study, single-chain variable fragments (scFv) against two Bradyrhizobium strains SUTN9-2 (yiN92-1e10) and DOA9 (yiDOA9-162) were isolated from a human phage display antibody library. Specific binding of scFv was demonstrated by ELISA and confocal-immunofluorescence imaging techniques. Bradyrhizobium localization in both endophytic and bacteroid forms could be observed inside rice tissue and plant nodule, respectively. Moreover, successful application of the recombinant antibody for the evaluation of nodule occupancy was also demonstrated in comparison with standard GUS-staining method. The results of this study showed for the first time the potential use of human phage display scFv antibody for imaging and monitoring of Bradyrhizobium biofertilizer and thus could be further applied for point-of-detection of bacterial inoculum in the legume-rice rotational crop system. IMPORTANCE Human scFv antibody generated from phage display technology was successfully used for the generation of specific recombinant antibodies: yiN92-1e10 and yiDOA9-162 for the detection of Bradyrhizobium strains SUTN9-2 and DOA9, respectively. These two recombinant scFv antibodies could be used for precise detection of the rhizobia both in symbiosis with legume and endophyte in rice tissue by ELISA and immunofluorescent staining, during legume-rice rotational cropping system in the field. This methodology can be further employed for the study of other plant-microbe interactions and monitoring of biofertilizer in diverse sustainable cropping systems as well as in precision agriculture.


Subject(s)
Bradyrhizobium/chemistry , Bradyrhizobium/physiology , Fabaceae/microbiology , Optical Imaging/methods , Oryza/microbiology , Single-Chain Antibodies/analysis , Cell Surface Display Techniques , Fertilizers/analysis , Humans , Nitrogen Fixation , Single-Chain Antibodies/genetics , Single-Chain Antibodies/metabolism , Staining and Labeling , Symbiosis
2.
Lett Appl Microbiol ; 68(3): 258-266, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30637774

ABSTRACT

Bradyrhizobium sp. strain SUTN9-2 was confirmed as rice endophytic bacteria and also as rice growth promotion agent. SUTN9-2 showed the capability of plant growth promotion characteristics, such as indole-3-acetic acid (IAA) and 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase productions and nitrogen fixation. In this study, the ability of SUTN9-2 to stimulate rice growth was investigated at different stages with N-free and NH4 NO3 under in vivo condition. The rice dry weight and chlorophyll content could be enhanced when SUTN9-2 was inoculated in N-free, especially at seedling stage (7 and 14 dai). The rice dry weight was also increased when SUTN9-2 was inoculated with NH4 NO3 at 7 and14 dai. The results of quantitative analysis of IAA and ACC deaminase were inconsistent with the expression of genes involved in IAA (nit) and ACC deaminase (acdS) productions. This inconsistently could implied that IAA and ACC deaminase produced from SUTN9-2 do not directly affect rice growth, but other factors resulting from the production of IAA and ACC deaminase could be involved. Moreover, the expression of genes involved in nitrogen fixation (nifH and nifV) of SUTN9-2 was also induced in rice tissues. This finding suggested that rice growth promotion may be supported by NH4 NO3 together with nitrogen fixation by SUTN9-2. SIGNIFICANCE AND IMPACT OF THE STUDY: Indole-3-acetic acid, 1-amino-cyclopropane-1-carboxylic acid deaminase productions and nitrogen fixation may play important roles in rice growth promotion by endophytic SUTN9-2, especially at early rice seedling growth stage, which has the potential to be used as rice seedling growth promoter in the system of rice intensification.


Subject(s)
Bradyrhizobium/metabolism , Nitrates/metabolism , Nitrogen Fixation/physiology , Oryza/microbiology , Seedlings/growth & development , Bradyrhizobium/genetics , Carbon-Carbon Lyases/metabolism , Chlorophyll/metabolism , Indoleacetic Acids/metabolism , Oryza/growth & development , Plant Development , Seedlings/microbiology
3.
World J Microbiol Biotechnol ; 30(1): 77-86, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23839714

ABSTRACT

Terminal restriction fragment length polymorphism (T-RFLP) analysis of amplified ribosomal RNA genes is used for profiling microbial communities and sometimes for species richness and relative abundance estimation in environmental samples. However, the T-RFLP fingerprint may be subject to biases during the procedure, influencing the detection of real community structures in the environment. To investigate possible sources of T-RFLP bias, 18S rRNA gene clones derived from two arbuscular mycorrhizal fungal sequences were combined in simple pairwise mixes to assess the effects of polymerase chain reaction cycle number, plant genomic DNA purification method and varying template ratio on the template-to-product ratio as measured by relative T-RF peak area. Varying cycle numbers indicated that amplification was still in the exponential phase at the cycle numbers lower than 18, so these small cycle numbers were used for the comparison of template-to-product quantities. Relative abundance estimated from T-RF peak ratios varied with different purification procedures, but the best results, closest to input ratios, were obtained by using phenol-chloroform purification. The presence of an excess of unpurified non-target plant genomic DNA generated a bias towards lower or overestimation of relative abundance. We conclude that a low number of amplification cycles and stringent DNA purification are necessary for accurate mixed sample analysis by T-RFLP.


Subject(s)
Diagnostic Errors , Molecular Typing/methods , Mycological Typing Techniques/methods , Mycorrhizae/classification , Mycorrhizae/genetics , Polymorphism, Restriction Fragment Length , Bias , RNA, Ribosomal, 18S/genetics
4.
World J Microbiol Biotechnol ; 10(5): 538-42, 1994 Sep.
Article in English | MEDLINE | ID: mdl-24421129

ABSTRACT

Somatic antigens of Bradyrhizobium japonicum, Rhizobium sp. (Cicer arietinum) and Rhizobium sp. (Leucaena leucocephala) were prepared as standard, single-species type from cultured cells. Equal numbers of the cells of these rhizobia were then combined to obtain a mixed-rhizobial-species antigen preparation. Rabbits were immunized either with the standard, single-species type or with the mixed-rhizobial-species antigen preparations. The antisera developed from the mixed antigen immunization contained antibodies for all three rhizobial species, detectable at agglutination titres of over 800. The mixed-rhizobial-species antisera were made species specific by cross-absorption. The cross-absorbed and the mixed-rhizobial-species antisera were generally similar in quality for strain identification by agglutination, fluorescent antibodies, immunoblot and ELISA. A 66% reduction in cost was estimated for the production of antisera by immunization with mixed-rhizobial-species antigen.

5.
World J Microbiol Biotechnol ; 9(6): 635-40, 1993 Nov.
Article in English | MEDLINE | ID: mdl-24420289

ABSTRACT

ELISA and antibody adsorption tests were applied to determine the minimal somatic antigen constitution of 243 strains of Bradyrhizobium sp. (Arachis) using 12 antisera. The 243 indigenous bradyrhizobial isolates were from 15 sites in four regions of Thailand. A total of 29 serogroups were identified. Most (80%) of the isolates tested had at least one heat-stable antigen in common with strain 280A, forming a so-called 280A serocluster. At 11 of 15 sites tested, 53 to 100% of the isolates fell into one or two predominant serogroups. The serological properties of the indigenous bradyrhizobia were not related to the cropping history of the cultivated fields from which they were isolated.

6.
New Phytol ; 108(1): 51-57, 1988 Jan.
Article in English | MEDLINE | ID: mdl-33873919

ABSTRACT

Severely iron-deficient peanuts (Arachis hypogaaea L.) grown on calcareous soils in central Thailand failed to nodulate until given foliar iron applications. Glasshouse experiments were conducted on two cultivars (Tainan 9 and Robut 33-1) to identify which stage of the nodule symbiosis was most sensitive to iron-deficiency. Iron-deficiency did not limit growth of soil or rhizosphere populations of peanut liradyrhizobium. Similar numbers of root nodule initials formed in the roots of both control and iron-sprayed plants, showing that iron-deficiency did not directly affect root infection and nodule initiation. Plants sprayed with iron produced greater numbers of excisable nodules and carried a greater nodule mass than untreated plants. Five days after iron application, nodules on sprayed plants of CV. Tainan 9 contained 200-fold higher bacteroid numbers per unit weight and 14-fold higher concentrations of leghaemoglobain. The onset of nitrogenase activity was also delayed by iron deficiency in both cultivars. Tainan 9 appeared more sensitive to iron-deficiency than Robut 33-1 in terms of nodule mass produced, but both cultivars showed the same effect of iron-deficiency on nitrogenase activity per plant. It is concluded that the failure of the infecting rhizobia to obtain adequate amounts of iron from the plant results in arrested nodule development and a failure of nitrogen fixation.

7.
Appl Environ Microbiol ; 43(3): 585-9, 1982 Mar.
Article in English | MEDLINE | ID: mdl-16345966

ABSTRACT

Successful inoculation of peanuts and cowpeas depends on the survival of rhizobia in soils which fluctuate between wide temperature and moisture extremes. Survival of two cowpea rhizobial strains (TAL309 and 3281) and two peanut rhizobial strains (T-1 and 201) was measured in two soils under three moisture conditions (air-dry, moist (-0.33 bar), and saturated soil) and at two temperatures (25 and 35 degrees C) when soil was not sterilized and at 40 degrees C when soil was sterilized. Populations of rhizobia were measured periodically for 45 days. The results in nonsterilized soil indicated that strain 201 survived relatively well under all environmental conditions. The 35 degrees C temperature in conjunction with the air-dry or saturated soil was the most detrimental to survival. At this temperature, the numbers of strains T-1, TAL309, and 3281 decreased about 2 logs in dry soil and 2.5 logs in saturated soil during 45 days of incubation. In sterilized soil, the populations of all strains in moist soil increased during the first 2 weeks, but decreased rapidly when incubated under dry conditions. The populations did not decline under saturated soil conditions. From these results it appears that rhizobial strains to be used for inoculant production should be screened under simulated field conditions for enhanced survival before their selection for commercial inoculant production.

SELECTION OF CITATIONS
SEARCH DETAIL
...