Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(10): eadf7209, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36888715

ABSTRACT

Shifts in the position of the intertropical convergence zone (ITCZ) have great importance for weather, climate, and society. The ITCZ shifts have been extensively studied in current and future warmer climate; however, little is known for its migration in the past on geological time scales. Using an ensemble of climate simulations over the past 540 million years, we show that ITCZ migrations are controlled primarily by continental configuration through two competing pathways: hemispheric radiation asymmetry and cross-equatorial ocean heat transport. The hemispheric asymmetry of absorbed solar radiation is produced mainly by land-ocean albedo contrast, which can be predicted using only the landmass distribution. The cross-equatorial ocean heat transport is strongly associated with the hemispheric asymmetry of surface wind stress, which is, in turn, controlled by the hemispheric asymmetry of ocean surface area. These results allow the influence of continental evolution on global ocean-atmosphere circulations to be understood through simple mechanisms that depend primarily on the latitudinal distribution of land.

2.
Proc Natl Acad Sci U S A ; 120(12): e2215278120, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36917663

ABSTRACT

Heatwaves damage societies worldwide and are intensifying with global warming. Several mechanistic drivers of heatwaves, such as atmospheric blocking and soil moisture-atmosphere feedback, are well-known for their ability to raise surface air temperature. However, what limits the maximum surface air temperature in heatwaves remains unclear; this became evident during recent Northern Hemisphere heatwaves which achieved temperatures far beyond the upper tail of the observed statistical distribution. Here, we present evidence for the hypothesis that convective instability limits annual maximum surface air temperatures (TXx) over midlatitude land. We provide a theory for the corresponding upper bound of midlatitude temperatures, which accurately describes the observed relationship between temperatures at the surface and in the midtroposphere. We show that known heatwave drivers shift the position of the atmospheric state in the phase space described by the theory, changing its proximity to the upper bound. This theory suggests that the upper bound for midlatitude TXx should increase 1.9 times as fast as 500-hPa temperatures at the time and location of TXx occurrences. Using empirical 500-hPa warming, we project that the upper bound of TXx over Northern Hemisphere midlatitude land (40°N to 65°N) will increase about twice as fast as global mean surface air temperature, and TXx will increase faster than this bound over regions that dry on the hottest days.

3.
Nature ; 599(7886): 611-615, 2021 11.
Article in English | MEDLINE | ID: mdl-34819681

ABSTRACT

A band of intense rainfall extends more than 1,000 km along Mexico's west coast during Northern Hemisphere summer, constituting the core of the North American monsoon1,2. As in other tropical monsoons, this rainfall maximum is commonly thought to be thermally forced by emission of heat from land and elevated terrain into the overlying atmosphere3-5, but a clear understanding of the fundamental mechanism governing this monsoon is lacking. Here we show that the core North American monsoon is generated when Mexico's Sierra Madre mountains deflect the extratropical jet stream towards the Equator, mechanically forcing eastward, upslope flow that lifts warm and moist air to produce convective rainfall. These findings are based on analyses of dynamic and thermodynamic structures in observations, global climate model integrations and adiabatic stationary wave solutions. Land surface heat fluxes do precondition the atmosphere for convection, particularly in summer afternoons, but these heat fluxes alone are insufficient for producing the observed rainfall maximum. Our results indicate that the core North American monsoon should be understood as convectively enhanced orographic rainfall in a mechanically forced stationary wave, not as a classic, thermally forced tropical monsoon. This has implications for the response of the North American monsoon to past and future global climate change, making trends in jet stream interactions with orography of central importance.


Subject(s)
Altitude , Atmosphere , Hot Temperature , Rain , Seasons , Tropical Climate , Mexico , Wind
4.
Proc Natl Acad Sci U S A ; 115(11): 2681-2686, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29483270

ABSTRACT

Cyclonic atmospheric vortices of varying intensity, collectively known as low-pressure systems (LPS), travel northwest across central India and produce more than half of the precipitation received by that fertile region and its ∼600 million inhabitants. Yet, future changes in LPS activity are poorly understood, due in part to inadequate representation of these storms in current climate models. Using a high-resolution atmospheric general circulation model that realistically simulates the genesis distribution of LPS, here we show that Indian monsoon LPS activity declines about 45% by the late 21st century in simulations of a business-as-usual emission scenario. The distribution of LPS genesis shifts poleward as it weakens, with oceanic genesis decreasing by ∼60% and continental genesis increasing by ∼10%; over land the increase in storm counts is accompanied by a shift toward lower storm wind speeds. The weakening and poleward shift of the genesis distribution in a warmer climate are confirmed and attributed, via a statistical model, to the reduction and poleward shift of low-level absolute vorticity over the monsoon region, which in turn are robust features of most coupled model projections. The poleward shift in LPS activity results in an increased frequency of extreme precipitation events over northern India.

5.
Nat Commun ; 8(1): 900, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042538

ABSTRACT

Volcanic eruptions provide tests of human and natural system sensitivity to abrupt shocks because their repeated occurrence allows the identification of systematic relationships in the presence of random variability. Here we show a suppression of Nile summer flooding via the radiative and dynamical impacts of explosive volcanism on the African monsoon, using climate model output, ice-core-based volcanic forcing data, Nilometer measurements, and ancient Egyptian writings. We then examine the response of Ptolemaic Egypt (305-30 BCE), one of the best-documented ancient superpowers, to volcanically induced Nile suppression. Eruptions are associated with revolt onset against elite rule, and the cessation of Ptolemaic state warfare with their great rival, the Seleukid Empire. Eruptions are also followed by socioeconomic stress with increased hereditary land sales, and the issuance of priestly decrees to reinforce elite authority. Ptolemaic vulnerability to volcanic eruptions offers a caution for all monsoon-dependent agricultural regions, presently including 70% of world population.The degree to which human societies have responded to past climatic changes remains unclear. Here, using a novel combination of approaches, the authors show how volcanically-induced suppression of Nile summer flooding led to societal unrest in Ptolemaic Egypt (305-30 BCE).


Subject(s)
Conflict, Psychological , Floods/history , Seasons , Volcanic Eruptions/history , Climate , Egypt, Ancient , Geography , History, Ancient , Humans , Models, Theoretical , Rain , Rivers , Warfare
6.
Proc Biol Sci ; 284(1860)2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28814655

ABSTRACT

Climate change is likely to profoundly modulate the burden of infectious diseases. However, attributing health impacts to a changing climate requires being able to associate changes in infectious disease incidence with the potentially complex influences of climate. This aim is further complicated by nonlinear feedbacks inherent in the dynamics of many infections, driven by the processes of immunity and transmission. Here, we detail the mechanisms by which climate drivers can shape infectious disease incidence, from direct effects on vector life history to indirect effects on human susceptibility, and detail the scope of variation available with which to probe these mechanisms. We review approaches used to evaluate and quantify associations between climate and infectious disease incidence, discuss the array of data available to tackle this question, and detail remaining challenges in understanding the implications of climate change for infectious disease incidence. We point to areas where synthesis between approaches used in climate science and infectious disease biology provide potential for progress.


Subject(s)
Climate Change , Communicable Diseases/epidemiology , Animals , Disease Vectors , Humans , Incidence
8.
Proc Natl Acad Sci U S A ; 113(6): 1510-5, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26811462

ABSTRACT

Theoretical models have been used to argue that seasonal mean monsoons will shift abruptly and discontinuously from wet to dry stable states as their radiative forcings pass a critical threshold, sometimes referred to as a "tipping point." Further support for a strongly nonlinear response of monsoons to radiative forcings is found in the seasonal onset of the South Asian summer monsoon, which is abrupt compared with the annual cycle of insolation. Here it is shown that the seasonal mean strength of monsoons instead exhibits a nearly linear dependence on a wide range of radiative forcings. First, a previous theory that predicted a discontinuous, threshold response is shown to omit a dominant stabilizing term in the equations of motion; a corrected theory predicts a continuous and nearly linear response of seasonal mean monsoon strength to forcings. A comprehensive global climate model is then used to show that the seasonal mean South Asian monsoon exhibits a near-linear dependence on a wide range of isolated greenhouse gas, aerosol, and surface albedo forcings. This model reproduces the observed abrupt seasonal onset of the South Asian monsoon but produces a near-linear response of the mean monsoon by changing the duration of the summer circulation and the latitude of that circulation's ascent branch. Thus, neither a physically correct theoretical model nor a comprehensive climate model support the idea that seasonal mean monsoons will undergo abrupt, nonlinear shifts in response to changes in greenhouse gas concentrations, aerosol emissions, or land surface albedo.

9.
Sci Rep ; 3: 1192, 2013.
Article in English | MEDLINE | ID: mdl-23378923

ABSTRACT

Elevated heating by the Tibetan Plateau was long thought to drive the South Asian summer monsoon, but recent work showed this monsoon was largely unaffected by removal of the plateau in a climate model, provided the narrow orography of adjacent mountain ranges was preserved. There is debate about whether those mountain ranges generate a strong monsoon by insulating the thermal maximum from cold and dry extratropical air or by providing a source of elevated heating. Here we show that the strength of the monsoon in a climate model is more sensitive to changes in surface heat fluxes from non-elevated parts of India than it is to changes in heat fluxes from adjacent elevated terrain. This result is consistent with the hypothesis that orography creates a strong monsoon by serving as a thermal insulator, and suggests that monsoons respond most strongly to heat sources coincident with the thermal maximum.

10.
Nature ; 471(7340): 584-6, 2011 Mar 31.
Article in English | MEDLINE | ID: mdl-21455168
11.
Nature ; 463(7278): 218-22, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20075917

ABSTRACT

The Tibetan plateau, like any landmass, emits energy into the atmosphere in the form of dry heat and water vapour, but its mean surface elevation is more than 5 km above sea level. This elevation is widely held to cause the plateau to serve as a heat source that drives the South Asian summer monsoon, potentially coupling uplift of the plateau to climate changes on geologic timescales. Observations of the present climate, however, do not clearly establish the Tibetan plateau as the dominant thermal forcing in the region: peak upper-tropospheric temperatures during boreal summer are located over continental India, south of the plateau. Here we show that, although Tibetan plateau heating locally enhances rainfall along its southern edge in an atmospheric model, the large-scale South Asian summer monsoon circulation is otherwise unaffected by removal of the plateau, provided that the narrow orography of the Himalayas and adjacent mountain ranges is preserved. Additional observational and model results suggest that these mountains produce a strong monsoon by insulating warm, moist air over continental India from the cold and dry extratropics. These results call for both a reinterpretation of how South Asian climate may have responded to orographic uplift, and a re-evaluation of how this climate may respond to modified land surface and radiative forcings in coming decades.

SELECTION OF CITATIONS
SEARCH DETAIL
...