Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Sci Adv ; 10(19): eadd1595, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728398

ABSTRACT

Large-scale, explosive volcanic eruptions are one of the Earth's most hazardous natural phenomena. We demonstrate that their size, frequency, and composition can be explained by processes in long-lived, high-crystallinity source reservoirs that control the episodic creation of large volumes of eruptible silicic magma and its delivery to the subvolcanic chamber where it is stored before eruption. Melt percolates upward through the reservoir and accumulates a large volume of low-crystallinity silicic magma which remains trapped until buoyancy causes magma-driven fractures to propagate into the overlying crust, allowing rapid magma transfer from the reservoir into the chamber. Ongoing melt percolation in the reservoir accumulates a new magma layer and the process repeats. Our results suggest that buoyancy, rather than crystallinity, is the key control on magma delivery from the source reservoir. They identify an optimum reservoir size for the largest silicic eruptions that is consistent with data from natural systems and explain why larger magnitude eruptions are not observed on Earth.

2.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139096

ABSTRACT

Understanding how the human virome, and which of its constituents, contributes to health or disease states is reliant on obtaining comprehensive virome profiles. By combining DNA viromes from isolated virus-like particles (VLPs) and whole metagenomes from the same faecal sample of a small cohort of healthy individuals and patients with severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), we have obtained a more inclusive profile of the human intestinal DNA virome. Key features are the identification of a core virome comprising tailed phages of the class Caudoviricetes, and a greater diversity of DNA viruses including extracellular phages and integrated prophages. Using an in silico approach, we predicted interactions between members of the Anaerotruncus genus and unique viruses present in ME/CFS microbiomes. This study therefore provides a framework and rationale for studies of larger cohorts of patients to further investigate disease-associated interactions between the intestinal virome and the bacteriome.


Subject(s)
Fatigue Syndrome, Chronic , Humans , Virome , Host Microbial Interactions , DNA
3.
Microorganisms ; 11(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37894153

ABSTRACT

Antimicrobial resistance is now commonly observed in bacterial isolates from multiple settings, compromising the efficacy of current antimicrobial agents. Therefore, there is an urgent requirement for efficacious novel antimicrobials to be used as therapeutics, prophylactically or as preservatives. One promising source of novel antimicrobial chemicals is phytochemicals, which are secondary metabolites produced by plants for numerous purposes, including antimicrobial defence. In this report, we compare the bioactivity of a range of phytochemical compounds, testing their ability to directly inhibit growth or to potentiate other antimicrobials against Salmonella enterica Typhimurium, Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococcus aureus. We found that nine compounds displayed consistent bioactivity either as direct antimicrobials or as potentiators. Thymol at 0.5 mg/mL showed the greatest antimicrobial effect and significantly reduced the growth of all species, reducing viable cell populations by 66.8%, 43.2%, 29.5%, and 70.2% against S. enterica Typhimurium, S. aureus, P. aeruginosa, and L. monocytogenes, respectively. Selection of mutants with decreased susceptibility to thymol was possible for three of the pathogens, at a calculated rate of 3.77 × 10-8, and characterisation of S. enterica Typhimurium mutants showed a low-level MDR phenotype due to over-expression of the major efflux system AcrAB-TolC. These data show that phytochemicals can have strong antimicrobial activity, but emergence of resistance should be evaluated in any further development.

4.
Eur J Cancer ; 194: 113344, 2023 11.
Article in English | MEDLINE | ID: mdl-37804771

ABSTRACT

BACKGROUND: Pembrolizumab is approved for the treatment of advanced and resected melanoma and was originally licensed as a three-weekly infusion (Q3W). In April 2019, a six-weekly infusion schedule (Q6W) was also approved. We retrospectively reviewed pembrolizumab prescribing for patients with melanoma across multiple United Kingdom (UK) centres to compare the safety and efficacy of Q6W with Q3W in real-world clinical practice. METHODS: Case notes for melanoma patients treated with pembrolizumab between April 2019 and August 2020 at eight UK centres were reviewed. Prespecified baseline characteristics of the Q3W and Q6W cohorts were compared, as well as toxicity and efficacy outcomes. Prescribers were surveyed about their prescribing practice. RESULTS: Two hundred seventy-seven patients were included: 116 commenced Q3W and 161 commenced Q6W pembrolizumab. The proportion of Q6W prescriptions varied by the centre (range 32-88%). Patient factors associated with an increased likelihood of receiving Q3W over Q6W were preexisting autoimmune comorbidity (odds ratio [OR] 0.33; 95% confidence interval [CI] 0.12-0.82) and treatment for advanced (versus resected) disease (OR 0.54; 95%CI 0.33-0.90). Toxicity outcomes were broadly similar for Q6W and Q3W: 14.9% versus 15.5% ≥ grade 3 Common Terminology Criteria for Adverse Events. Estimated 12-month recurrence-free survival for adjuvantly treated patients was 78.9% for Q6W and 74.2% for Q3W (hazard ratio [HR] 0.93; 95%CI 0.50-1.73). Estimated 12-month progression-free survival for advanced patients was 41.8% for Q6W and 55.9% for Q3W (HR 1.21, 95%CI 0.67-2.18). CONCLUSIONS: Q6W is an appropriate option for administering pembrolizumab, given the opportunity to reduce the health service resource burden.


Subject(s)
Antibodies, Monoclonal, Humanized , Melanoma , Humans , Retrospective Studies , Treatment Outcome , Antibodies, Monoclonal, Humanized/adverse effects
7.
Appl Environ Microbiol ; 88(16): e0053322, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35916501

ABSTRACT

Bacterial extracellular vesicles (BEVs) released from both Gram-negative and Gram-positive bacteria provide an effective means of communication and trafficking of cell signaling molecules. In the gastrointestinal tract (GIT) BEVs produced by members of the intestinal microbiota can impact host health by mediating microbe-host cell interactions. A major unresolved question, however, is what factors influence the composition of BEV proteins and whether the host influences protein packaging into BEVs and secretion into the GIT. To address this, we have analyzed the proteome of BEVs produced by the major human gut symbiont Bacteroides thetaiotaomicron both in vitro and in vivo in the murine GIT in order to identify proteins specifically enriched in BEVs produced in vivo. We identified 113 proteins enriched in BEVs produced in vivo, the majority (62/113) of which accumulated in BEVs in the absence of any changes in their expression by the parental cells. Among these selectively enriched proteins, we identified dipeptidyl peptidases and an asparaginase and confirmed their increased activity in BEVs produced in vivo. We also showed that intact BEVs are capable of degrading bile acids via a bile salt hydrolase. Collectively these findings provide additional evidence for the dynamic interplay of host-microbe interactions in the GIT and the existence of an active mechanism to drive and enrich a selected group of proteins for secretion into BEVs in the GIT. IMPORTANCE The gastrointestinal tract (GIT) harbors a complex community of microbes termed the microbiota that plays a role in maintaining the host's health and wellbeing. How this comes about and the nature of microbe-host cell interactions in the GIT is still unclear. Recently, nanosized vesicles naturally produced by bacterial constituents of the microbiota have been shown to influence responses of different host cells although the molecular basis and identity of vesicle-born bacterial proteins that mediate these interactions is unclear. We show here that bacterial extracellular vesicles (BEVs) produced by the human symbiont Bacteroides thetaiotaomicron in the GIT are enriched in a set of proteins and enzymes, including dipeptidyl peptidases, an asparaginase and a bile salt hydrolase that can influence host cell biosynthetic pathways. Our results provide new insights into the molecular basis of microbiota-host interactions that are central to maintaining GIT homeostasis and health.


Subject(s)
Bacteroides thetaiotaomicron , Extracellular Vesicles , Animals , Asparaginase/metabolism , Bacteria , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Extracellular Vesicles/metabolism , Gastrointestinal Microbiome , Humans , Mice , Proteome/metabolism
8.
J Extracell Vesicles ; 11(1): e12189, 2022 01.
Article in English | MEDLINE | ID: mdl-35064769

ABSTRACT

The gastrointestinal (GI) tract harbours a complex microbial community, which contributes to its homeostasis. A disrupted microbiome can cause GI-related diseases, including inflammatory bowel disease (IBD), therefore identifying host-microbe interactions is crucial for better understanding gut health. Bacterial extracellular vesicles (BEVs), released into the gut lumen, can cross the mucus layer and access underlying immune cells. To study BEV-host interactions, we examined the influence of BEVs generated by the gut commensal bacterium, Bacteroides thetaiotaomicron, on host immune cells. Single-cell RNA sequencing data and host-microbe protein-protein interaction networks were used to predict the effect of BEVs on dendritic cells, macrophages and monocytes focusing on the Toll-like receptor (TLR) pathway. We identified biological processes affected in each immune cell type and cell-type specific processes including myeloid cell differentiation. TLR pathway analysis highlighted that BEV targets differ among cells and between the same cells in healthy versus disease (ulcerative colitis) conditions. The in silico findings were validated in BEV-monocyte co-cultures demonstrating the requirement for TLR4 and Toll-interleukin-1 receptor domain-containing adaptor protein (TIRAP) in BEV-elicited NF-kB activation. This study demonstrates that both cell-type and health status influence BEV-host communication. The results and the pipeline could facilitate BEV-based therapies for the treatment of IBD.


Subject(s)
Bacteroides thetaiotaomicron/metabolism , Extracellular Vesicles/metabolism , Gastrointestinal Microbiome/immunology , Inflammatory Bowel Diseases/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Host Microbial Interactions , Humans , Inflammatory Bowel Diseases/microbiology , Macrophages/immunology , Macrophages/metabolism , Membrane Glycoproteins/antagonists & inhibitors , Monocytes/immunology , Monocytes/metabolism , Protein Interaction Maps , Receptors, Interleukin-1/antagonists & inhibitors , Signal Transduction , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptors/metabolism
10.
Microorganisms ; 9(12)2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34946176

ABSTRACT

When transferring highly infective patients to specialist hospitals, safe systems of work minimise the risk to healthcare staff. The EpiShuttle is a patient transport system that was developed to fit into an air ambulance. A validated decontamination procedure is required before the system can be adopted in the UK. Hydrogen peroxide (H2O2) vapour fumigation may offer better penetration of the inaccessible parts than the liquid disinfectant wiping that is currently suggested. To validate this, an EpiShuttle was fumigated in a sealed test chamber. Commercial bacterial spore indicators (BIs), alongside organic liquid suspensions and dried surface samples of MS2 bacteriophage (a safe virus surrogate), were placed in and around the EpiShuttle, for the purpose of evaluation. The complete kill of all of the BIs in the five test runs demonstrated the efficacy of the fumigation cycle. The log reduction of the MS2 that was dried on the coupons ranged from 2.66 to 4.50, but the log reduction of the MS2 that was in the organic liquids only ranged from 0.07 to 1.90, confirming the results of previous work. Fumigation with H2O2 alone may offer insufficient inactivation of viruses in liquid droplets, therefore a combination of fumigation and disinfectant surface wiping was proposed. Initial fumigation reducing contamination with minimal intervention allows disinfectant wipe cleaning to be completed more safely, with a second fumigation step inactivating the residual pathogens.

11.
Genes (Basel) ; 12(10)2021 10 18.
Article in English | MEDLINE | ID: mdl-34681030

ABSTRACT

The gastrointestinal tract harbors the gut microbiota, structural alterations of which (dysbiosis) are linked with an increase in gut permeability ("leaky gut"), enabling luminal antigens and bacterial products such as nanosized bacterial extracellular vesicles (BEVs) to access the circulatory system. Blood-derived BEVs contain various cargoes and may be useful biomarkers for diagnosis and monitoring of disease status and relapse in conditions such as inflammatory bowel disease (IBD). To progress this concept, we developed a rapid, cost-effective protocol to isolate BEV-associated DNA and used 16S rRNA gene sequencing to identify bacterial origins of the blood microbiome of healthy individuals and patients with Crohn's disease and ulcerative colitis. The 16S rRNA gene sequencing successfully identified the origin of plasma-derived BEV DNA. The analysis showed that the blood microbiota richness, diversity, or composition in IBD, healthy control, and protocol control groups were not significantly distinct, highlighting the issue of 'kit-ome' contamination in low-biomass studies. Our pilot study provides the basis for undertaking larger studies to determine the potential use of blood microbiota profiling as a diagnostic aid in IBD.


Subject(s)
Biomarkers/blood , Colitis, Ulcerative/blood , Crohn Disease/blood , Extracellular Vesicles/genetics , Inflammatory Bowel Diseases/blood , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacteria/pathogenicity , Cardiovascular System/microbiology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/microbiology , Crohn Disease/genetics , Crohn Disease/microbiology , Extracellular Vesicles/microbiology , Female , Gastrointestinal Microbiome/genetics , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/pathology , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/microbiology , Male , Middle Aged , Pilot Projects , RNA, Ribosomal, 16S/blood
12.
Viruses ; 13(10)2021 10 18.
Article in English | MEDLINE | ID: mdl-34696523

ABSTRACT

The human intestinal microbiota is abundant in viruses, comprising mainly bacteriophages, occasionally outnumbering bacteria 10:1 and is termed the virome. Due to their high genetic diversity and the lack of suitable tools and reference databases, the virome remains poorly characterised and is often referred to as "viral dark matter". However, the choice of sequencing platforms, read lengths and library preparation make study design challenging with respect to the virome. Here we have compared the use of PCR and PCR-free methods for sequence-library construction on the Illumina sequencing platform for characterising the human faecal virome. Viral DNA was extracted from faecal samples of three healthy donors and sequenced. Our analysis shows that most variation was reflecting the individually specific faecal virome. However, we observed differences between PCR and PCR-free library preparation that affected the recovery of low-abundance viral genomes. Using three faecal samples in this study, the PCR library preparation samples led to a loss of lower-abundance vOTUs evident in their PCR-free pairs (vOTUs 128, 6202 and 8364) and decreased the alpha-diversity indices (Chao1 p-value = 0.045 and Simpson p-value = 0.044). Thus, differences between PCR and PCR-free methods are important to consider when investigating "rare" members of the gut virome, with these biases likely negligible when investigating moderately and highly abundant viruses.


Subject(s)
Cloning, Molecular/methods , Gastrointestinal Microbiome/genetics , Virome/genetics , Bacteriophages/genetics , Feces/virology , Gene Library , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenome/genetics , Metagenomics/methods , Nucleic Acid Amplification Techniques/methods , Sequence Analysis, DNA/methods , Viruses/genetics
13.
Health Phys ; 121(4): 282-303, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34546213

ABSTRACT

ABSTRACT: The dose response relationship and corresponding values for mid-lethal dose and slope are used to define the dose- and time-dependent parameters of the hematopoietic acute radiation syndrome. The characteristic time course of mortality, morbidity, and secondary endpoints are well defined. The concomitant comorbidities, potential mortality, and other multi-organ injuries that are similarly dose- and time-dependent are less defined. Determination of the natural history or pathophysiology associated with the lethal hematopoietic acute radiation syndrome is a significant gap in knowledge, especially when considered in the context of a nuclear weapon scenario. In this regard, the exposure is likely ill-defined, heterogenous, and nonuniform. These conditions forecast sparing of bone marrow and increased survival from the acute radiation syndrome consequent to threshold doses for the delayed effects of acute radiation exposure due to marrow sparing, medical management, and use of approved medical countermeasures. The intent herein is to provide a composite natural history of the pathophysiology concomitant with the evolution of the potentially lethal hematopoietic acute radiation syndrome derived from studies that focused on total body irradiation and partial body irradiation with bone marrow sparing. The marked differential in estimated LD50/60 from 7.5 Gy to 10.88 Gy for the total body irradiation and partial body irradiation with 5% bone marrow sparing models, respectively, provided a clear distinction between the attendant multiple organ injury and natural history of the two models that included medical management. Total body irradiation was focused on equivalent LD50/60 exposures. The 10 Gy and 11 Gy partial body with 5% bone marrow sparing exposures bracketed the LD50/60 (10.88 Gy). The incidence, progression, and duration of multiple organ injury was described for each exposure protocol within the hematopoietic acute radiation syndrome. The higher threshold doses for the partial body irradiation with bone marrow sparing protocol induced a marked degree of multiple organ injury to include lethal gastrointestinal acute radiation syndrome, prolonged crypt loss and mucosal damage, immune suppression, acute kidney injury, body weight loss, and added clinical comorbidities that defined a complex timeline of organ injury through the acute hematopoietic acute radiation syndrome. The natural history of the acute radiation syndrome presents a 60-d time segment of multi-organ sequelae that is concomitant with the latent period or time to onset of the evolving multi-organ injury of the delayed effects of acute radiation exposure.


Subject(s)
Acute Radiation Syndrome , Acute Radiation Syndrome/diagnosis , Acute Radiation Syndrome/etiology , Animals , Bone Marrow/radiation effects , Dose-Response Relationship, Radiation , Macaca mulatta , Whole-Body Irradiation/adverse effects
14.
J Immunother Cancer ; 9(9)2021 09.
Article in English | MEDLINE | ID: mdl-34561275

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors are now standard of care treatment for many cancers. Treatment failure in metastatic melanoma is often due to tumor heterogeneity, which is not easily captured by conventional CT or tumor biopsy. The aim of this prospective study was to investigate early microstructural and functional changes within melanoma metastases following immune checkpoint blockade using multiparametric MRI. METHODS: Fifteen treatment-naïve metastatic melanoma patients (total 27 measurable target lesions) were imaged at baseline and following 3 and 12 weeks of treatment on immune checkpoint inhibitors using: T2-weighted imaging, diffusion kurtosis imaging, and dynamic contrast-enhanced MRI. Treatment timepoint changes in tumor cellularity, vascularity, and heterogeneity within individual metastases were evaluated and correlated to the clinical outcome in each patient based on Response Evaluation Criteria in Solid Tumors V.1.1 at 1 year. RESULTS: Differential tumor growth kinetics in response to immune checkpoint blockade were measured in individual metastases within the same patient, demonstrating significant intertumoral heterogeneity in some patients. Early detection of tumor cell death or cell loss measured by a significant increase in the apparent diffusivity (Dapp) (p<0.05) was observed in both responding and pseudoprogressive lesions after 3 weeks of treatment. Tumor heterogeneity, as measured by apparent diffusional kurtosis (Kapp), was consistently higher in the pseudoprogressive and true progressive lesions, compared with the responding lesions throughout the first 12 weeks of treatment. These preceded tumor regression and significant tumor vascularity changes (Ktrans, ve, and vp) detected after 12 weeks of immunotherapy (p<0.05). CONCLUSIONS: Multiparametric MRI demonstrated potential for early detection of successful response to immune checkpoint inhibitors in metastatic melanoma.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Melanoma/diagnostic imaging , Melanoma/drug therapy , Multiparametric Magnetic Resonance Imaging/methods , Aged , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunity , Male , Middle Aged
15.
Environ Microbiol ; 23(6): 3164-3181, 2021 06.
Article in English | MEDLINE | ID: mdl-33876566

ABSTRACT

Sulfate-reducing bacteria (SRB) are widespread in human guts, yet their expansion has been linked to colonic diseases. We report the isolation, sequencing and physiological characterization of strain QI0027T , a novel SRB species belonging to the class Desulfovibrionia. Metagenomic sequencing of stool samples from 45 Chinese individuals, and comparison with 1690 Desulfovibrionaceae metagenome-assembled genomes recovered from humans of diverse geographic locations, revealed the presence of QI0027T in 22 further individuals. QI0027T encoded nitrogen fixation genes and based on the acetylene reduction assay, actively fixed nitrogen. Transcriptomics revealed that QI0027T overexpressed 42 genes in nitrogen-limiting conditions compared to cultures supplemented with ammonia, including genes encoding nitrogenases, a urea uptake system and the urease complex. Reanalyses of 835 public stool metatranscriptomes showed that nitrogenase genes from Desulfovibrio bacteria were expressed in six samples suggesting that nitrogen fixation might be active in the gut environment. Although frequently thought of as a nutrient-rich environment, nitrogen fixation can occur in the human gut. Animals are often nitrogen limited and have evolved diverse strategies to capture biologically active nitrogen, ranging from amino acid transporters to stable associations with beneficial microbes that provide fixed nitrogen. QI0027T is the first Desulfovibrio human isolate for which nitrogen fixation has been demonstrated, suggesting that some sulfate-reducing bacteria could also play a role in the availability of nitrogen in the gut.


Subject(s)
Desulfovibrio , Nitrogen Fixation , Animals , Bacteria/metabolism , Desulfovibrio/genetics , Desulfovibrio/metabolism , Humans , Nitrogenase/metabolism , Oxidation-Reduction , Phylogeny , Sulfates
16.
Radiat Res ; 195(4): 307-323, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33577641

ABSTRACT

Medical countermeasures (MCMs) for hematopoietic acute radiation syndrome (H-ARS) should be evaluated in well-characterized animal models, with consideration of at-risk populations such as pediatrics. We have developed pediatric mouse models of H-ARS and delayed effects of acute radiation exposure (DEARE) for efficacy testing of MCMs against radiation. Male and female C57BL/6J mice aged 3, 4, 5, 6, 7 and 8 weeks old (±1 day) were characterized for baseline hematopoietic and gastrointestinal parameters, radiation response, efficacy of a known MCM, and DEARE at six and 12 months after total-body irradiation (TBI). Weanlings (age 3 weeks) were the most radiosensitive age group with an estimated LD50/30 of 712 cGy, while mice aged 4 to 8 weeks were more radioresistant with an estimated LD50/30 of 767-787 cGy. Female weanlings were more radiosensitive than males at 3 and 4 weeks old but became significantly more radioresistant after the pubertal age of 5 weeks. The most dramatic increase in body weight, RBC counts and intestinal circumference length occurred from 3 to 5 weeks of age. The established radiomitigator Neulasta® (pegfilgrastim) significantly increased 30-day survival in all age groups, validating these models for MCM efficacy testing. Analyses of DEARE among pediatric survivors revealed depressed weight gain in males six months post-TBI, and increased blood urea nitrogen at 12 months post-TBI which was more severe in females. Hematopoietic DEARE at six months post-TBI appeared to be less severe in survivors from the 3- and 4-week-old groups but was equally severe in all age groups by 12 months of age. Similar to our other acute radiation mouse models, there was no appreciable effect of Neulasta used as an H-ARS MCM on the severity of DEARE. In summary, these data characterize a pediatric mouse model useful for assessing the efficacy of MCMs against ARS and DEARE in children.


Subject(s)
Acute Radiation Syndrome/drug therapy , Filgrastim/pharmacology , Hematopoietic System/drug effects , Polyethylene Glycols/pharmacology , Radiation Tolerance/drug effects , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/physiopathology , Animals , Disease Models, Animal , Hematopoietic System/physiopathology , Hematopoietic System/radiation effects , Humans , Mice , Pediatrics , Radiation Tolerance/radiation effects , Whole-Body Irradiation/adverse effects
18.
Front Microbiol ; 11: 583378, 2020.
Article in English | MEDLINE | ID: mdl-33193224

ABSTRACT

Bacteroides spp. are part of the human intestinal microbiota but can under some circumstances become clinical pathogens. Phages are a potentially valuable therapeutic treatment option for many pathogens, but phage therapy for pathogenic Bacteroides spp. including Bacteroides fragilis is currently limited to three genome-sequenced phages. Here we describe the isolation from sewage wastewater and genome of a lytic phage, vB_BfrS_23, that infects and kills B. fragilis strain GB124. Transmission electron microscopy identified this phage as a member of the Siphoviridae family. The phage is stable when held at temperatures of 4 and 60°C for 1 h. It has a very narrow host range, only infecting one host from a panel of B. fragilis strains (n = 8). Whole-genome sequence analyses of vB_BfrS_23 determined it is double-stranded DNA phage and is circularly permuted, with a genome of 48,011 bp. The genome encodes 73 putative open reading frames. We also sequenced the host bacterium, B. fragilis GB124 (5.1 Mb), which has two plasmids of 43,923 and 4,138 bp. Although this phage is host specific, its isolation together with the detailed characterization of the host B. fragilis GB124 featured in this study represent a useful starting point from which to facilitate the future development of highly specific therapeutic agents. Furthermore, the phage could be a novel tool in determining water (and water reuse) treatment efficacy, and for identifying human fecal transmission pathways within contaminated environmental waters and foodstuffs.

19.
Health Phys ; 119(5): 594-603, 2020 11.
Article in English | MEDLINE | ID: mdl-32947487

ABSTRACT

Exposure to total- and partial-body irradiation following a nuclear or radiological incident result in the potentially lethal acute radiation syndromes of the gastrointestinal and hematopoietic systems in a dose- and time-dependent manner. Radiation-induced damage to the gastrointestinal tract is observed within days to weeks post-irradiation. Our objective in this study was to evaluate plasma biomarker utility for the gastrointestinal acute radiation syndrome in non-human primates after partial body irradiation with minimal bone marrow sparing through correlation with tissue and histological analyses. Plasma and jejunum samples from non-human primates exposed to partial body irradiation of 12 Gy with bone marrow sparing of 2.5% were evaluated at various time points from day 0 to day 21 as part of a natural history study. Additionally, longitudinal plasma samples from non-human primates exposed to 10 Gy partial body irradiation with 2.5% bone marrow sparing were evaluated at timepoints out to 180 d post-irradiation. Plasma and jejunum metabolites were quantified via liquid chromatography-tandem mass spectrometry and histological analysis consisted of corrected crypt number, an established metric to assess radiation-induced gastrointestinal damage. A positive correlation of metabolite levels in jejunum and plasma was observed for citrulline, serotonin, acylcarnitine, and multiple species of phosphatidylcholines. Citrulline levels also correlated with injury and regeneration of crypts in the small intestine. These results expand the characterization of the natural history of gastrointestinal acute radiation syndrome in non-human primates exposed to partial body irradiation with minimal bone marrow sparing and also provide additional data toward the correlation of citrulline with histological endpoints.


Subject(s)
Acute Radiation Syndrome/diagnosis , Biomarkers/blood , Bone Marrow/radiation effects , Gastrointestinal Tract/metabolism , Organ Sparing Treatments/methods , Radiation Exposure/adverse effects , Radiation Injuries, Experimental/diagnosis , Acute Radiation Syndrome/blood , Acute Radiation Syndrome/etiology , Animals , Citrulline/blood , Gastrointestinal Tract/radiation effects , Macaca mulatta , Male , Radiation Dosage , Radiation Injuries, Experimental/blood , Radiation Injuries, Experimental/etiology
20.
Health Phys ; 119(5): 604-620, 2020 11.
Article in English | MEDLINE | ID: mdl-32947489

ABSTRACT

Exposure to ionizing radiation results in injuries of the hematopoietic, gastrointestinal, and respiratory systems, which are the leading causes responsible for morbidity and mortality. Gastrointestinal injury occurs as an acute radiation syndrome. To help inform on the natural history of the radiation-induced injury of the partial body irradiation model, we quantitatively profiled the proteome of jejunum from non-human primates following 12 Gy partial body irradiation with 2.5% bone marrow sparing over a time period of 3 wk. Jejunum was analyzed by liquid chromatography-tandem mass spectrometry, and pathway and gene ontology analysis were performed. A total of 3,245 unique proteins were quantified out of more than 3,700 proteins identified in this study. Also a total of 289 proteins of the quantified proteins showed significant and consistent responses across at least three time points post-irradiation, of which 263 proteins showed strong upregulations while 26 proteins showed downregulations. Bioinformatic analysis suggests significant pathway and upstream regulator perturbations post-high dose irradiation and shed light on underlying mechanisms of radiation damage. Canonical pathways altered by radiation included GP6 signaling pathway, acute phase response signaling, LXR/RXR activation, and intrinsic prothrombin activation pathway. Additionally, we observed dysregulation of proteins of the retinoid pathway and retinoic acid, an active metabolite of vitamin A, as quantified by liquid chromatography-tandem mass spectrometry. Correlation of changes in protein abundance with a well-characterized histological endpoint, corrected crypt number, was used to evaluate biomarker potential. These data further define the natural history of the gastrointestinal acute radiation syndrome in a non-human primate model of partial body irradiation with minimal bone marrow sparing.


Subject(s)
Acute Radiation Syndrome/diagnosis , Gastrointestinal Tract/metabolism , Organ Sparing Treatments/methods , Proteome/metabolism , Radiation Exposure/adverse effects , Radiation Injuries, Experimental/diagnosis , Retinoids/metabolism , Acute Radiation Syndrome/etiology , Acute Radiation Syndrome/metabolism , Animals , Biomarkers/metabolism , Bone Marrow/radiation effects , Disease Models, Animal , Gastrointestinal Tract/radiation effects , Macaca mulatta , Male , Proteome/analysis , Radiation Dosage , Radiation Injuries, Experimental/etiology , Radiation Injuries, Experimental/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...