Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Pharmaceutics ; 12(7)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629845

ABSTRACT

Minimally processed greige (unbleached) cotton fibers demonstrate enhanced clotting relative to highly processed United States Pharmacopeia (USP) type 7 bleached cotton gauze. This effect is thought to be due to the material surface polarity. We hypothesized that a textile could be constructed, conserving the hemostasis-accelerating properties of greige cotton, while maintaining structural integrity and improving absorbance. Spun bond nonwovens of varying surface polarity were designed and prepared based on ratios of greige cotton/bleached cotton/polypropylene fibers. A thromboelastographic analysis was performed on fibrous samples in citrated blood to evaluate the rate of fibrin and clot formation. Lee White clotting times were obtained to assess the material's clotting activity in platelet fresh blood. An electrokinetic analysis of samples was performed to analyze for material surface polarity. Hemostatic properties varied with composition ratios, fiber density, and fabric fenestration. The determinations of the surface polarity of cotton fabrics with electrokinetic analysis uncovered a range of surface polarities implicated in fabric-initiated clotting; a three-point design approach was employed with the combined use of thromboelastography, thrombin velocity index, Lee White clotting, and absorption capacity determinations applied to fabric structure versus function analysis. The resulting analysis demonstrates that greige cotton may be utilized, along with hydrophilic and hydrophobic fibers, to improve the initiation of fibrin formation and a decrease in clotting time in hemostatic dressings suitable to be commercially developed. Hydroentanglement is an efficient and effective process for imparting structural integrity to cotton-based textiles, while conserving hemostatic function.

2.
J Funct Biomater ; 5(4): 273-87, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25459983

ABSTRACT

Greige cotton contains waxes and pectin on the outer surface of the fiber that are removed when bleached, but these components present potential wound dressing functionality. Cotton nonwovens blended with hydrophobic and hydrophilic fibers including viscose, polyester, and polypropylene were assessed for clotting activity with thromboelastography (TEG) and thrombin production. Clotting was evaluated based on TEG measurements: R (time to initiation of clot formation), K (time from end of R to a 20 mm clot), α (rate of clot formation according to the angle tangent to the curve as K is reached), and MA (clot strength). TEG values correlate to material surface polarity as measured with electrokinetic parameters (ζplateau, Δζ and swell ratio). The material surface polarity (ζplateau) varied from -22 to -61 mV. K values and thrombin concentrations were found to be inversely proportional to  Î¶plateau with an increase in material hydrophobicity. An increase in the swell ratios of the materials correlated with decreased K values suggesting that clotting rates following fibrin formation increase with increasing material surface area due to swelling. Clot strength (MA) also increased with material hydrophobicity. Structure/function implications from the observed clotting physiology induced by the materials are discussed.

3.
J Biomed Mater Res A ; 66(3): 433-40, 2003 Sep 01.
Article in English | MEDLINE | ID: mdl-12918024

ABSTRACT

Occlusion and elasticity were combined in a novel cotton-based alginate dressing containing a nontoxic elastase inhibitor. Cotton gauzes were modified with a textile finishing process for incorporating alginate to yield a dressing material that retains elasticity while enhancing absorption. The algino-cellulose conjugates were formed through citric acid crosslinking of cellulose and alginate. The alginate-citrate finishes were applied to cotton gauzes in various formulations containing citric acid, sodium hypophosphite, and polyethylene glycol. The modified gauzes contain a citrate conjugate of alginate and cellulose that gels upon hydration. The alginate-citrate finishes were combined with the neutrophil elastase inhibitor, oleic acid, to demonstrate the ability of the algino-cellulose fibers to release the inhibitor and neutralize destructively high levels of neutrophil elastase found in nonhealing and burn wounds. Four types of gauzes were examined for the effect of the algino-cellulose finish on cotton gauze absorbency and elasticity. Fourier transform infrared (FTIR) spectroscopy of the film and alginate-citrate finished cotton showed formation of the alginate and citrate cellulose esters. Scanning electron microscopy analysis revealed large areas of the yarn surface covered by the alginate film with a smooth surface on the original fibers. Wetting of the gauze surface resulted in formation of a hydrated gel on the yarns with apparent swelling of the film and the fiber-coated alginate.


Subject(s)
Alginates/administration & dosage , Bandages , Cotton Fiber , Glucuronic Acid/administration & dosage , Hexuronic Acids/administration & dosage , Leukocyte Elastase/antagonists & inhibitors , Alginates/chemistry , Carbohydrate Conformation , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Microscopy, Electron, Scanning , Molecular Sequence Data , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL