Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Alzheimers Dement ; 20(6): 4092-4105, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38716833

ABSTRACT

INTRODUCTION: The limbic system is critical for memory function and degenerates early in the Alzheimer's disease continuum. Whether obstructive sleep apnea (OSA) is associated with alterations in the limbic white matter tracts remains understudied. METHODS: Polysomnography, neurocognitive assessment, and brain magnetic resonance imaging (MRI) were performed in 126 individuals aged 55-86 years, including 70 cognitively unimpaired participants and 56 participants with mild cognitive impairment (MCI). OSA measures of interest were the apnea-hypopnea index and composite variables of sleep fragmentation and hypoxemia. Microstructural properties of the cingulum, fornix, and uncinate fasciculus were estimated using free water-corrected diffusion tensor imaging. RESULTS: Higher levels of OSA-related hypoxemia were associated with higher left fornix diffusivities only in participants with MCI. Microstructure of the other white matter tracts was not associated with OSA measures. Higher left fornix diffusivities correlated with poorer episodic verbal memory. DISCUSSION: OSA may contribute to fornix damage and memory dysfunction in MCI. HIGHLIGHTS: Sleep apnea-related hypoxemia was associated with altered fornix integrity in MCI. Altered fornix integrity correlated with poorer memory function. Sleep apnea may contribute to fornix damage and memory dysfunction in MCI.


Subject(s)
Cognitive Dysfunction , Diffusion Tensor Imaging , Fornix, Brain , Hypoxia , Humans , Male , Female , Cognitive Dysfunction/etiology , Aged , Fornix, Brain/diagnostic imaging , Fornix, Brain/pathology , Middle Aged , Aged, 80 and over , Hypoxia/complications , Polysomnography , Neuropsychological Tests/statistics & numerical data , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging , Sleep Apnea Syndromes/complications , Sleep Apnea, Obstructive/complications
2.
Mov Disord ; 39(6): 1026-1036, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38661496

ABSTRACT

BACKGROUND: Patients with Parkinson's disease (PD) experience changes in behavior, personality, and cognition that can manifest even in the initial stages of the disease. Previous studies have suggested that mild behavioral impairment (MBI) should be considered an early marker of cognitive decline. However, the precise neurostructural underpinnings of MBI in early- to mid-stage PD remain poorly understood. OBJECTIVE: The aim was to explore the changes in white matter microstructure linked to MBI and mild cognitive impairment (MCI) in early- to mid-stage PD using diffusion magnetic resonance imaging (dMRI). METHODS: A total of 91 PD patients and 36 healthy participants were recruited and underwent anatomical MRI and dMRI, a comprehensive neuropsychological battery, and the completion of the Mild Behavioral Impairment-Checklist. Metrics of white matter integrity included tissue fractional anisotropy (FAt) and radial diffusivity (RDt), free water (FW), and fixel-based apparent fiber density (AFD). RESULTS: The connection between the left amygdala and the putamen was disrupted when comparing PD patients with MBI (PD-MBI) to PD-non-MBI, as evidenced by increased RDt (η2 = 0.09, P = 0.004) and both decreased AFD (η2 = 0.05, P = 0.048) and FAt (η2 = 0.12, P = 0.014). Compared to controls, PD patients with both MBI and MCI demonstrated increased FW for the connection between the left orbitofrontal gyrus (OrG) and the hippocampus (η2 = 0.22, P = 0.008), augmented RDt between the right OrG and the amygdala (η2 = 0.14, P = 0.008), and increased RDt (η2 = 0.25, P = 0.028) with decreased AFD (η2 = 0.10, P = 0.046) between the right OrG and the caudate nucleus. CONCLUSION: MBI is associated with abnormal microstructure of connections involving the orbitofrontal cortex, putamen, and amygdala. To our knowledge, this is the first assessment of the white matter microstructure in PD-MBI using dMRI. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , White Matter , Humans , Parkinson Disease/pathology , Parkinson Disease/diagnostic imaging , Parkinson Disease/complications , Male , Female , White Matter/diagnostic imaging , White Matter/pathology , Middle Aged , Aged , Cognitive Dysfunction/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Neuropsychological Tests , Diffusion Magnetic Resonance Imaging/methods , Amygdala/pathology , Amygdala/diagnostic imaging , Diffusion Tensor Imaging/methods , Putamen/diagnostic imaging , Putamen/pathology
3.
Brain ; 147(6): 2245-2257, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38243610

ABSTRACT

Advanced methods of imaging and mapping the healthy and lesioned brain have allowed for the identification of the cortical nodes and white matter tracts supporting the dual neurofunctional organization of language networks in a dorsal phonological and a ventral semantic stream. Much less understood are the anatomical correlates of the interaction between the two streams; one hypothesis being that of a subcortically mediated interaction, through crossed cortico-striato-thalamo-cortical and cortico-thalamo-cortical loops. In this regard, the pulvinar is the thalamic subdivision that has most regularly appeared as implicated in the processing of lexical retrieval. However, descriptions of its connections with temporal (language) areas remain scarce. Here we assess this pulvino-temporal connectivity using a combination of state-of-the-art techniques: white matter stimulation in awake surgery and postoperative diffusion MRI (n = 4), virtual dissection from the Human Connectome Project 3 and 7 T datasets (n = 172) and operative microscope-assisted post-mortem fibre dissection (n = 12). We demonstrate the presence of four fundamental fibre contingents: (i) the anterior component (Arnold's bundle proper) initially described by Arnold in the 19th century and destined to the anterior temporal lobe; (ii) the optic radiations-like component, which leaves the pulvinar accompanying the optical radiations and reaches the posterior basal temporal cortices; (iii) the lateral component, which crosses the temporal stem orthogonally and reaches the middle temporal gyrus; and (iv) the auditory radiations-like component, which leaves the pulvinar accompanying the auditory radiations to the superomedial aspect of the temporal operculum, just posteriorly to Heschl's gyrus. Each of those components might correspond to a different level of information processing involved in the lexical retrieval process of picture naming.


Subject(s)
Pulvinar , Temporal Lobe , Humans , Female , Male , Adult , Temporal Lobe/physiology , Temporal Lobe/diagnostic imaging , Pulvinar/physiology , Pulvinar/diagnostic imaging , Neural Pathways/physiology , Connectome , White Matter/diagnostic imaging , White Matter/physiology , Language , Middle Aged , Nerve Net/physiology , Nerve Net/diagnostic imaging , Young Adult
4.
Med Image Anal ; 93: 103085, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219499

ABSTRACT

Recently, deep reinforcement learning (RL) has been proposed to learn the tractography procedure and train agents to reconstruct the structure of the white matter without manually curated reference streamlines. While the performances reported were competitive, the proposed framework is complex, and little is still known about the role and impact of its multiple parts. In this work, we thoroughly explore the different components of the proposed framework, such as the choice of the RL algorithm, seeding strategy, the input signal and reward function, and shed light on their impact. Approximately 7,400 models were trained for this work, totalling nearly 41,000 h of GPU time. Our goal is to guide researchers eager to explore the possibilities of deep RL for tractography by exposing what works and what does not work with the category of approach. As such, we ultimately propose a series of recommendations concerning the choice of RL algorithm, the input to the agents, the reward function and more to help future work using reinforcement learning for tractography. We also release the open source codebase, trained models, and datasets for users and researchers wanting to explore reinforcement learning for tractography.


Subject(s)
Learning , Reinforcement, Psychology , Humans , Reward , Algorithms
5.
Proc Biol Sci ; 291(2014): 20231408, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38196349

ABSTRACT

Sleep benefits motor memory consolidation, which is mediated by sleep spindle activity and associated memory reactivations during non-rapid eye movement (NREM) sleep. However, the particular role of NREM2 and NREM3 sleep spindles and the mechanisms triggering this memory consolidation process remain unclear. Here, simultaneous electroencephalographic and functional magnetic resonance imaging (EEG-fMRI) recordings were collected during night-time sleep following the learning of a motor sequence task. Adopting a time-based clustering approach, we provide evidence that spindles iteratively occur within clustered and temporally organized patterns during both NREM2 and NREM3 sleep. However, the clustering of spindles in trains is related to motor memory consolidation during NREM2 sleep only. Altogether, our findings suggest that spindles' clustering and rhythmic occurrence during NREM2 sleep may serve as an intrinsic rhythmic sleep mechanism for the timed reactivation and subsequent consolidation of motor memories, through synchronized oscillatory activity within a subcortical-cortical network involved during learning.


Subject(s)
Memory Consolidation , Learning , Cluster Analysis , Memory , Sleep
6.
Neuroreport ; 34(18): 868-872, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37942739

ABSTRACT

OBJECTIVE: Studies have shown changes in the human brain associated with physical activity and cardiorespiratory fitness (CRF). The effects of CRF on cortical thickness have been well-described in older adults, where a positive association between CRF and cortical thickness has been reported, but the impact of sustained aerobic activity in young adults remains poorly described. Here, exploratory analysis was performed on cortical thickness data that was collected in groups of fit and sedentary young adults. METHODS: Twenty healthy sedentary individuals (<2 h/week physical activity) were compared to 20 active individuals (>6 h/week physical activity) and cortical thickness was measured in 34 cortical areas. Cortical thickness values were compared between groups, and correlations between cortical thickness and VO2 max were tested. RESULTS: Cardiorespiratory fitness was significantly higher in active individuals compared to sedentary individuals. Cortical thickness was lower in regions of the left (lateral and medial orbitofrontal cortex, pars orbitalis, pars triangularis, rostral anterior cingulate cortex, superior temporal cortex and frontal pole) and right (lateral and medial orbitofrontal cortex and pars opercularis) hemispheres. Only the left frontal pole and right lateral orbitofrontal cortical thickness remained significant after false discovery rate correction. Negative correlations were observed between VO2 max and cortical thickness in the left (frontal pole) and right (caudal anterior cingulate and medial orbitofrontal cortex) hemispheres. CONCLUSION: The present exploratory analysis supports previous findings suggesting that neuroplastic effects of cardiorespiratory fitness may be attenuated in young compared with older individuals, underscoring a moderating effect of age on the relationship between fitness and cortical thickness.


Subject(s)
Cerebral Cortex , Magnetic Resonance Imaging , Humans , Young Adult , Aged , Cerebral Cortex/diagnostic imaging , Gyrus Cinguli , Temporal Lobe , Broca Area
7.
Neuroscience ; 517: 70-83, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36921757

ABSTRACT

Physical activity (PA) has been shown to benefit various cognitive functions and promote neuroplasticity. Whereas the effects of PA on brain anatomy and function have been well documented in older individuals, data are scarce in young adults. Whether high levels of cardiorespiratory fitness (CRF) achieved through regular PA are associated with significant structural and functional changes in this age group remains largely unknown. In the present study, twenty young adults that engaged in at least 8 hours per week of aerobic exercise during the last 5 years were compared to twenty sedentary controls on measures of cortical excitability, white matter microstructure, cortical thickness and metabolite concentration. All measures were taken in the left primary motor cortex and CRF was assessed with VO2max. Transcranial magnetic stimulation (TMS) revealed higher corticospinal excitability in high- compared to low-fit individuals reflected by greater input/output curve amplitude and slope. No group differences were found for other TMS (short-interval intracortical inhibition and intracortical facilitation), diffusion MRI (fractional anisotropy and apparent fiber density), structural MRI (cortical thickness) and magnetic resonance spectroscopy (NAA, GABA, Glx) measures. Taken together, the present data suggest that brain changes associated with increased CRF are relatively limited, at least in primary motor cortex, in contrast to what has been observed in older adults.


Subject(s)
Motor Cortex , Young Adult , Humans , Aged , Motor Cortex/physiology , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging , Exercise , Cognition , Transcranial Magnetic Stimulation/methods , Evoked Potentials, Motor/physiology
8.
Brain Struct Funct ; 228(1): 103-120, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35995880

ABSTRACT

The angular gyrus (AG) has been described in numerous studies to be consistently activated in various functional tasks. The angular gyrus is a critical connector epicenter linking multiple functional networks due to its location in the posterior part of the inferior parietal cortex, namely at the junction between the parietal, temporal, and occipital lobes. It is thus crucial to identify the different pathways that anatomically connect this high-order association region to the rest of the brain. Our study revisits the three-dimensional architecture of the structural AG connectivity by combining state-of-the-art postmortem blunt microdissection with advanced in vivo diffusion tractography to comprehensively describe the association, projection, and commissural fibers that connect the human angular gyrus. AG appears as a posterior "angular stone" of associative connections belonging to mid- and long-range dorsal and ventral fibers of the superior and inferior longitudinal systems, respectively, to short-range parietal, occipital, and temporal fibers, including U-shaped fibers in the posterior transverse system. Thus, AG is at a pivotal dorso-ventral position reflecting its critical role in the different functional networks, particularly in language elaboration and spatial attention and awareness in the left and right hemispheres, respectively. We also reveal striatal, thalamic, and brainstem connections and a typical inter-hemispheric homotopic callosal connectivity supporting the suggested AG role in the integration of sensory input for modulating motor control and planning. The present description of AG's highly distributed wiring diagram may drastically improve intraoperative subcortical testing and post-operative neurologic outcomes related to surgery in and around the angular gyrus.


Subject(s)
Diffusion Tensor Imaging , Microdissection , Humans , Diffusion Tensor Imaging/methods , Neural Pathways , Image Processing, Computer-Assisted , Parietal Lobe
9.
Sci Data ; 9(1): 725, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36433966

ABSTRACT

TractoInferno is the world's largest open-source multi-site tractography database, including both research- and clinical-like human acquisitions, aimed specifically at machine learning tractography approaches and related ML algorithms. It provides 284 samples acquired from 3 T scanners across 6 different sites. Available data includes T1-weighted images, single-shell diffusion MRI (dMRI) acquisitions, spherical harmonics fitted to the dMRI signal, fiber ODFs, and reference streamlines for 30 delineated bundles generated using 4 tractography algorithms, as well as masks needed to run tractography algorithms. Manual quality control was additionally performed at multiple steps of the pipeline. We showcase TractoInferno by benchmarking the learn2track algorithm and 5 variations of the same recurrent neural network architecture. Creating the TractoInferno database required approximately 20,000 CPU-hours of processing power, 200 man-hours of manual QC, 3,000 GPU-hours of training baseline models, and 4 Tb of storage, to produce a final database of 350 Gb. By providing a standardized training dataset and evaluation protocol, TractoInferno is an excellent tool to address common issues in machine learning tractography.

10.
Neuroimage Clin ; 36: 103235, 2022.
Article in English | MEDLINE | ID: mdl-36272339

ABSTRACT

Medial temporal structures, namely the hippocampus, the entorhinal cortex and the parahippocampal gyrus, are particularly vulnerable to Alzheimer's disease and hypoxemia. Here, we tested the associations between obstructive sleep apnea (OSA) severity and medial temporal lobe volumes in 114 participants aged 55-86 years (35 % women). We also investigated the impact of sex, age, cognitive status, and free-water fraction correction on these associations. Increased OSA severity was associated with larger hippocampal and entorhinal cortex volumes in women, but not in men. Greater OSA severity also correlated with increased hippocampal volumes in participants with amnestic mild cognitive impairment, but not in cognitively unimpaired participants, regardless of sex. Using free-water corrected volumes eliminated all significant associations with OSA severity. Therefore, the increase in medial temporal subregion volumes may possibly be due to edema. Whether these structural manifestations further progress to neuronal death in non-treated OSA patients should be investigated.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Sleep Apnea, Obstructive , Male , Humans , Female , Magnetic Resonance Imaging , Temporal Lobe/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Sleep Apnea, Obstructive/diagnostic imaging , Cognition/physiology , Water
11.
Brain Lang ; 231: 105146, 2022 08.
Article in English | MEDLINE | ID: mdl-35709592

ABSTRACT

We mapped the left hemisphere cortical regions and fiber bundles involved in picture naming in adults by integrating task-based fMRI with dMRI tractography. We showed that a ventral pathway that "maps image and sound to meaning" involves the middle occipital, inferior temporal, superior temporal, inferior frontal gyri, and the temporal pole where a signal exchange is made possible by the inferior fronto-occipital, inferior longitudinal, middle longitudinal, uncinate fasciculi, and the extreme capsule. A dorsal pathway that "maps sound to speech" implicates the inferior temporal, superior temporal, inferior frontal, precentral gyri, and the supplementary motor area where the arcuate fasciculus and the frontal aslant ensure intercommunication. This study provides a neurocognitive model of picture naming and supports the hypothesis that the ventral indirect route passes through the temporal pole. This further supports the idea that the inferior and superior temporal gyri may play pivotal roles within the dual-stream framework of language.


Subject(s)
White Matter , Adult , Cerebral Cortex , Humans , Language , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Neural Pathways/diagnostic imaging
12.
J Neurosurg ; : 1-9, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35245898

ABSTRACT

OBJECTIVE: The aim of this study was to predict set-shifting deterioration after resection of low-grade glioma. METHODS: The authors retrospectively analyzed a bicentric series of 102 patients who underwent surgery for low-grade glioma. The difference between the completion times of the Trail Making Test parts B and A (TMT B-A) was evaluated preoperatively and 3-4 months after surgery. High dimensionality of the information related to the surgical cavity topography was reduced to a small set of predictors in four different ways: 1) overlap between surgical cavity and each of the 122 cortical parcels composing Yeo's 17-network parcellation of the brain; 2) Tractotron: disconnection by the cavity of the major white matter bundles; 3) overlap between the surgical cavity and each of Yeo's networks; and 4) disconets: signature of structural disconnection by the cavity of each of Yeo's networks. A random forest algorithm was implemented to predict the postoperative change in the TMT B-A z-score. RESULTS: The last two network-based approaches yielded significant accuracies in left-out subjects (area under the receiver operating characteristic curve [AUC] approximately equal to 0.8, p approximately equal to 0.001) and outperformed the two alternatives. In single tree hierarchical models, the degree of damage to Yeo corticocortical network 12 (CC 12) was a critical node: patients with damage to CC 12 higher than 7.5% (cortical overlap) or 7.2% (disconets) had much higher risk to deteriorate, establishing for the first time a causal link between damage to this network and impaired set-shifting. CONCLUSIONS: The authors' results give strong support to the idea that network-level approaches are a powerful way to address the lesion-symptom mapping problem, enabling machine learning-powered individual outcome predictions.

13.
J Neurosci Methods ; 367: 109435, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34915047

ABSTRACT

Combining MRI modalities is a growing trend in neurosciences. It provides opportunities to investigate the brain architecture supporting cognitive functions. Integrating fMRI activation to guide dMRI tractography offers potential advantages over standard tractography methods. A quick glimpse of the literature on this topic reveals that this technique is challenging, and no consensus or "best practices" currently exist, at least not within a single document. We present the first attempt to systematically analyze and summarize the literature of 80 studies that integrated task-based fMRI results to guide tractography, over the last two decades. We report 19 findings that cover challenges related to sample size, microstructure modelling, seeding methods, multimodal space registration, false negatives/positives, specificity/validity, gray/white matter interface and more. These findings will help the scientific community (1) understand the strengths and limitations of the approaches, (2) design studies using this integrative framework, and (3) motivate researchers to fill the gaps identified. We provide references toward best practices, in order to improve the overall result's replicability, sensitivity, specificity, and validity.


Subject(s)
Magnetic Resonance Imaging , White Matter , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Gray Matter , White Matter/diagnostic imaging
14.
Neuroimage ; 218: 116889, 2020 09.
Article in English | MEDLINE | ID: mdl-32447016

ABSTRACT

Diffusion MRI tractography processing pipeline requires a large number of steps (typically 20+ steps). If parameters of these steps, number of threads, and random seed generators are not carefully controlled, the resulting tractography can easily be non-reproducible and non-replicable, even in test-test experiments. To handle these issues, we developed TractoFlow. TractoFlow is fully automatic from raw diffusion weighted images to tractography. The pipeline also outputs classical diffusion tensor imaging measures and several fiber orientation distribution function measures. TractoFlow supports the recent Brain Imaging Data Structure (BIDS) format as input and is based on two engines: Nextflow and Singularity. In this work, the TractoFlow pipeline is evaluated on three databases and shown to be efficient and reproducible from 98% to 100%, depending on parameter choices. Moreover, it is easy to use for non-technical users, with little to no installation requirements. TractoFlow is publicly available for academic research and is an important step forward for better structural brain connectivity mapping.


Subject(s)
Brain Mapping/methods , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , Software , Humans
15.
Sci Data ; 6(1): 245, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672977

ABSTRACT

We present MRI data from a single human volunteer consisting in over 599 multi-contrast MR images (T1-weighted, T2-weighted, proton density, fluid-attenuated inversion recovery, T2* gradient-echo, diffusion, susceptibility-weighted, arterial-spin labelled, and resting state BOLD functional connectivity imaging) acquired in over 73 sessions on 36 different scanners (13 models, three manufacturers) over the course of 15+ years (cf. Data records). Data included planned data collection acquired within the Consortium pour l'identification précoce de la maladie Alzheimer - Québec (CIMA-Q) and Canadian Consortium on Neurodegeneration in Aging (CCNA) studies, as well as opportunistic data collection from various protocols. These multiple within- and between-centre scans over a substantial time course of a single, cognitively healthy volunteer can be useful to answer a number of methodological questions of interest to the community.


Subject(s)
Healthy Volunteers , Magnetic Resonance Imaging , Adult , Aging , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Time Factors
17.
Neuroscience ; 402: 104-115, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30615913

ABSTRACT

Ample evidence suggests that consolidation of the memory trace associated with a newly acquired motor sequence is supported by thalamo-cortical spindle activity during subsequent sleep, as well as functional changes in a distributed cortico-striatal network. To date, however, no studies have investigated whether the structural white matter connections between these regions affect motor sequence memory consolidation in relation with sleep spindles. Here, we used diffusion weighted imaging (DWI) tractography to reconstruct the major fascicles of the cortico-striato-pallido-thalamo-cortical loop in both young and older participants who were trained on an explicit finger sequence learning task before and after a daytime nap. Thereby, this allowed us to examine whether post-learning sleep spindles measured using polysomnographic recordings interact with consolidation processes and this specific neural network. Our findings provide evidence corroborating the critical role of NREM2 thalamo-cortical sleep spindles in motor sequence memory consolidation, and show that the post-learning changes in these neurophysiological events relate specifically to white matter characteristics in thalamo-cortical fascicles. Moreover, we demonstrate that microstructure along this fascicle relates indirectly to offline gains in performance through an increase of spindle density over motor-related cortical areas. These results suggest that the integrity of thalamo-cortical projections, via their impact on sleep spindle generation, may represent one of the critical mechanisms modulating the expression of sleep-dependent offline gains following motor sequence learning in healthy adults.


Subject(s)
Memory Consolidation/physiology , Motor Cortex/physiology , Motor Skills/physiology , Sleep , Thalamus/physiology , White Matter/physiology , Adult , Corpus Striatum/anatomy & histology , Corpus Striatum/physiology , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Electroencephalography , Humans , Middle Aged , Motor Activity , Motor Cortex/anatomy & histology , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Polysomnography , Thalamus/anatomy & histology , White Matter/anatomy & histology , Young Adult
18.
Front Physiol ; 9: 1557, 2018.
Article in English | MEDLINE | ID: mdl-30459639

ABSTRACT

Beyond its essential visual role, light, and particularly blue light, has numerous non-visual effects, including stimulating cognitive functions and alertness. Non-visual effects of light may decrease with aging and contribute to cognitive and sleepiness complaints in aging. However, both the brain and the eye profoundly change in aging. Whether the stimulating effects light on cognitive brain functions varies in aging and how ocular changes may be involved is not established. We compared the impact of blue and orange lights on non-visual cognitive brain activity in younger (23.6 ± 2.5 years), and older individuals with their natural lenses (NL; 66.7 ± 5.1 years) or with intraocular lens (IOL) replacement following cataract surgery (69.6 ± 4.9 years). Analyses reveal that blue light modulates executive brain responses in both young and older individuals. Light effects were, however, stronger in young individuals including in the hippocampus and frontal and cingular cortices. Light effects did not significantly differ between older-IOL and older-NL while regression analyses indicated that differential brain engagement was not underlying age-related differences in light effects. These findings show that, although its impact decreases, light can stimulate cognitive brain activity in aging. Since lens replacement did not affect light impact, the brain seems to adapt to the progressive decrease in retinal light exposure in aging.

19.
Front Hum Neurosci ; 12: 351, 2018.
Article in English | MEDLINE | ID: mdl-30254577

ABSTRACT

Background: It has been proposed that physical exercise can help improve upper limb functions in Parkinson's disease (PD) patients; yet evidence for this hypothesis is limited. Objective: To assess the effects of aerobic exercise training (AET) on general upper limb functions in sedentary people with PD and healthy adults (HA). Methods: Two groups, 19 PD patients (Hoehn & Yahr ≤ 2) and 20 HA, matched on age and sedentary level, followed a 3-month stationary bicycle AET regimen. We used the kinematic theory framework to characterize and quantify the different motor control commands involved in performing simple upper-limb movements as drawing lines. Repeated measures ANCOVA models were used to assess the effect of AET in each group, as well as the difference between groups following the training regimen. Results: At baseline, PD individuals had a larger antagonist response, a longer elapsed time between the visual stimulus and the end of the movement, and a longer time of displacement of the stylus than the HA. Following the 12-week AET, PD participants showed significant decreases of the agonist and antagonist commands, as well as the antagonist response spread. A significant group ∗ session interaction effect was observed for the agonist command and the response spread of the antagonist command, suggesting a significant change for these two parameters only in PD patients following the AET. Among the differences observed at baseline, only the difference for the time of movement remained after AET. Conclusion: A 3-month AET has a significant positive impact on the capacity to draw lines in a more efficiency way, in PD patients, indicating an improvement in the upper limb motor function.

20.
Neuroimage ; 169: 419-430, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29277652

ABSTRACT

Sleep benefits motor memory consolidation. This mnemonic process is thought to be mediated by thalamo-cortical spindle activity during NREM-stage2 sleep episodes as well as changes in striatal and hippocampal activity. However, direct experimental evidence supporting the contribution of such sleep-dependent physiological mechanisms to motor memory consolidation in humans is lacking. In the present study, we combined EEG and fMRI sleep recordings following practice of a motor sequence learning (MSL) task to determine whether spindle oscillations support sleep-dependent motor memory consolidation by transiently synchronizing and coordinating specialized cortical and subcortical networks. To that end, we conducted EEG source reconstruction on spindle epochs in both cortical and subcortical regions using novel deep-source localization techniques. Coherence-based metrics were adopted to estimate functional connectivity between cortical and subcortical structures over specific frequency bands. Our findings not only confirm the critical and functional role of NREM-stage2 sleep spindles in motor skill consolidation, but provide first-time evidence that spindle oscillations [11-17 Hz] may be involved in sleep-dependent motor memory consolidation by locally reactivating and functionally binding specific task-relevant cortical and subcortical regions within networks including the hippocampus, putamen, thalamus and motor-related cortical regions.


Subject(s)
Electroencephalography/methods , Functional Neuroimaging/methods , Hippocampus/physiology , Magnetic Resonance Imaging/methods , Memory Consolidation/physiology , Motor Activity/physiology , Nerve Net/physiology , Putamen/physiology , Sleep Stages/physiology , Thalamus/physiology , Adult , Female , Hippocampus/diagnostic imaging , Humans , Male , Putamen/diagnostic imaging , Serial Learning/physiology , Thalamus/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...