Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Omega ; 8(49): 46922-46933, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38107909

ABSTRACT

2-((3-Cyano-4,6-dimethylpyridin-2-yl)oxy)acetohydrazide 1 was used as the precursor for the synthesis of 5-thioxo-1,3,4-oxadiazol-2-yl)methoxy)nicotinonitrile 2. The latter was alkylated with different alkylating agents to produce the S-alkylated products 3-6. Galactosylation of 5-thioxo-1,3,4-oxadiazol-2-yl)methoxy)nicotinonitrile 2 produces a mixture of S- and N-galactosides 8 and 9. The hydrazide 1 is converted to azide 10, coupled with glycine methyl ester hydrochloride and a set of amines to produce the target coupled amides 11-15. New compounds were assigned using NMR and elemental analysis. Compound 12 had potent cytotoxicity with IC50 values of 0.5 and 5.27 µM against MCF-7 and HepG2 cell lines compared with doxorubicin, which displayed the following IC50: 2.14 and 2.48 µM for the mentioned cell lines, respectively. Regarding the molecular target, compound 12 exhibited potent PIM-1 inhibition activity with 97.5% with an IC50 value of 14.3 nM compared to Staurosporine (96.8%, IC50 = 16.7 nM). Moreover, compound 12 significantly activated apoptotic cell death in MCF-7 cells, increasing the cell population by total apoptosis by 33.43% (23.18% for early apoptosis and 10.25% for late apoptosis) compared to the untreated control group (0.64%), and arresting the cell cycle at S-phase by 36.02% compared to control 29.12%. Besides, compound 12 caused tumor inhibition by 42.1% in solid tumors in the SEC-bearing mice. Results disclosed that compound 12 significantly impeded cell migration and cell proliferation by interfering with PIM-1 enzymatic activity via considerable apoptosis-induction, which made it an attractive lead compound for the development of chemotherapeutics to treat breast cancer.

2.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139850

ABSTRACT

According to data provided by the World Health Organization (WHO), a total of 2.3 million women across the globe received a diagnosis of breast cancer in the year 2020, and among these cases, 685,000 resulted in fatalities. As the incidence of breast cancer statistics continues to rise, it is imperative to explore new avenues in the ongoing battle against this disease. Therefore, a number of new indolyl-hydrazones were synthesized by reacting the ethyl 3-formyl-1H-indole-2-carboxylate 1 with thiosemicarbazide, semicarbazide.HCl, 4-nitrophenyl hydrazine, 2,4-dinitrophenyl hydrazine, and 4-amino-5-(1H-indol-2-yl)-1,2,4-triazole-3-thione to afford the new hit compounds, which were assigned chemical structures as thiosemicarbazone 3, bis(hydrazine derivative) 5, semicarbzone 6, Schiff base 8, and the corresponding hydrazones 10 and 12 by NMR, elemental analysis, and X-ray single-crystal analysis. The MTT assay was employed to investigate the compounds' cytotoxicity against breast cancer cells (MCF-7). Cytotoxicity results disclosed potent IC50 values against MCF-7, especially compounds 5, 8, and 12, with IC50 values of 2.73 ± 0.14, 4.38 ± 0.23, and 7.03 ± 0.37 µM, respectively, compared to staurosproine (IC50 = 8.32 ± 0.43 µM). Consequently, the activities of compounds 5, 8, and 12 in relation to cell migration were investigated using the wound-healing test. The findings revealed notable wound-healing efficacy, with respective percentages of wound closure measured at 48.8%, 60.7%, and 51.8%. The impact of the hit compounds on cell proliferation was assessed by examining their apoptosis-inducing properties. Intriguingly, compound 5 exhibited a significant enhancement in cell death within MCF-7 cells, registering a notable increase of 39.26% in comparison to the untreated control group, which demonstrated only 1.27% cell death. Furthermore, the mechanism of action of compound 5 was scrutinized through testing against kinase receptors. The results revealed significant kinase inhibition, particularly against PI3K-α, PI3K-ß, PI3K-δ, CDK2, AKT-1, and EGFR, showcasing promising activity, compared to standard drugs targeting these receptors. In the conclusive phase, through in vivo assay, compound 5 demonstrated a substantial reduction in tumor volume, decreasing from 106 mm³ in the untreated control to 56.4 mm³. Moreover, it significantly attenuated tumor proliferation by 46.9%. In view of these findings, the identified leads exhibit promises for potential development into future medications for the treatment of breast cancer, as they effectively hinder both cell migration and proliferation.

3.
ACS Omega ; 7(49): 45665-45677, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36530255

ABSTRACT

Cancer is the most severe disease worldwide. Every year, tens of millions of people are diagnosed with cancer, and over half of those people will ultimately die from the disease. Hence, the discovery of new inhibitors for fighting cancer is necessary. As a result, new indolyl-triazole hybrids were synthesized to target breast and liver cancer cells. The synthetic strategy involves glycosylation of the 4-aryltriazolethiones 3a-b with acetyl-protected α-halosugars in the presence of K2CO3 in acetone to give a mixture of ß-S-glycosides 6a-b, 7a-b, and ß-N-glycosides 8a-b, 9a-b. Chemo-selective S-glycosylation was achieved using NaHCO3 in ethanol. The migration of glycosyl moiety from sulfur to nitrogen (S → N glycosylmigration) was achieved thermally without any catalyst. Alkylation of the triazole-thiones with 2-bromoethanol and 1-bromopropan-2-ol in the presence of K2CO3 yielded the corresponding S-alkylated products. The synthesized compounds were tested for their cytotoxicity using an MTT assay and for apoptosis induction targeting PARP-1 and EGFR. Compounds 12b, 13a, and 13b exhibited cytotoxic activities with promising IC50 values of 2.67, 6.21, 1.07 µM against MCF-7 cells and 3.21, 8.91, 0.32 µM against HepG2 cells compared to Erlotinib (IC50 = 2.51, 2.91 µM, respectively) as reference drug. Interestingly, compounds 13b induced apoptosis in MCf-7 and HepG2 cells, arresting the cell cycle at the G2/M and S phases, respectively. Additionally, the dual enzyme inhibition seen in compound 13b against EGFR and PARP-1 is encouraging, with IC50 values of 62.4 nM compared to Erlotinib (80 nM) and 1.24 nM compared to Olaparib (1.49 nM), respectively. The anticancer activity was finally validated using an in vivo SEC-cancer model; compound 13b improved both hematological and biochemical analyses inhibiting tumor proliferation by 66.7% compared to Erlotinib's 65.7%. So, compound 13b may serve as a promising anticancer activity through dual PARP-1/EGFR target inhibition.

4.
Bioorg Chem ; 122: 105708, 2022 05.
Article in English | MEDLINE | ID: mdl-35290929

ABSTRACT

According to the World Health Organization (WHO) statistics: In 2020, there were 2.3 million women diagnosed with breast cancer and 685,000 deaths globally. Therefore, searching for new leads for fighting this type of cancer is necessary. VEGFR-2 kinase plays a crucial role in the proliferation, migration, and survival of breast cancer cells so, identifying novel inhibitors for VEGFR-2 could be effective in breast cancer treatment. Accordingly, novel heterocyclic compounds containing indole, 1,2,4-triazole, and glycosyl or allyl moieties were synthesized. The synthesized compounds were evaluated for their cytotoxic and apoptotic activities towards breast cancer cell lines (MCF7). In this regard, compounds 6, 17, and 18 exhibited promising cytotoxic activity against MCF-7 cells with IC50 values of 3.06, 1.18, and 3.02 µM compared to Sorafenib (IC50 = 2.13 µM). Interestingly, among the identified lead molecules, compound 17 displayed remarkable VEGFR2 inhibition activity with IC50 value of 19.8 nM compared to Sunitinib (IC50 = 75 nM) and Sorafenib (IC50 = 30 nM). Moreover, it is significantly stimulated apoptotic breast cancer cell death; it induced apoptosis by 17.4 %, arresting the cell cycle phases at G1 and S-phases. Additionally, in vivo (Xenograft model) study validated the anticancer activity of the hit compound 17, which showed a tumor inhibition ratio of 54.2 % compared to 5-FU (49.5%) with an improvement of hematological and biochemical parameters. The results disclosed that the identified hit compound 17 is validated for impeding cell proliferation and migration through apoptosis activation and VEGFR2 inhibition.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Protein Kinase Inhibitors , Vascular Endothelial Growth Factor Receptor-2 , Animals , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Cell Proliferation , Drug Screening Assays, Antitumor , Female , Humans , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors/pharmacology , Schiff Bases/pharmacology , Structure-Activity Relationship , Triazoles/chemistry , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors
5.
Bioorg Chem ; 111: 104877, 2021 06.
Article in English | MEDLINE | ID: mdl-33839579

ABSTRACT

Liver cancer is the most common type of cancer in many countries. New studies and statistics show rising liver cancer worldwide, so it is essential to seek new agents for this type of cancer. PIM1 has an attractive target in the discovery of cancer medications as it is very much expressed in a variety of malignancies and influences such as tumorigenesis, cell cycle progression, cellular proliferation, apoptosis, and cell migration. Accordingly, a series of pyridones and pyridine-amides were synthesized and tested for anti-liver cancer activity. In the synthetic strategy 4,6-diaryl-3-cyano-2-pyridones 3a-n were synthesized using one-pot four component synthetic method. Structural modifications were done on 4,6-diphenyl-3-cayno-2-pyridone 3a to enhance the activity. Alkylation in the presence of K2CO3 afforded the O-alkylated products 4-6. The acetoxy hydrazide 7 was synthesized and cyclized into 1,3,4-oxadiazolethione 8 which alkylated on sulfur to give 10. Azide-coupling method was used to couple the 2-(pyridin-2-yloxy)acetohydrazide 7 to different amines and amino acid esters to furnish the products 12a-e and 13a-b. The synthesized derivatives were subjected to cytotoxic screening against HepG2 and THLE-2 cells, Compounds 10, 12e and 13a have a remarkable cytotoxic activity with IC50 values (10.7-13.9 µM). Compound 7 was found to be more cytotoxic by showing the lowest IC50 value of 7.26 compared to 5-FU (IC50 = 6.98 µM). It inhibited cell growth by 76.76%. Additionally, it significantly stimulated apoptotic liver cancer cell death with 49.78-fold (22.90% compared to 0.46% for the control) arresting cell cycle Pre-G1 with 35.16% of a cell population, compared to 1.57% for the control. Moreover, it validated the intrinsic apoptosis through upregulation of P53, and other related genes, with inhibition of anti-apoptotic genes through PIM-1 inhibition.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Liver Neoplasms/drug therapy , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Molecular Docking Simulation , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
6.
Molecules ; 25(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481682

ABSTRACT

A multicomponent synthesis was empolyed for the synthesis of ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate 1. An interesting cyclization was obtained when the amino-ester 1 reacted with ethyl isothiocyanate to give the benzo[4,5]thieno[2,3-d][1,3]thiazin-4-one 3. Acylation of the amino-ester 1 with chloroacetyl chloride in DCM and Et3N afforded the acylated ester 4. The amino-ester 1 was cyclized to benzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one 8, which was reacted with some alkylating agents leading to alkylation at nitrogen 9-13. Hydrazide 14 was utilized as a synthon for the synthesis of the derivatives 15-19. Chloro-thieno[2,3-d]pyrimidine 20 was synthesized and reacted with the hydrazine hydrate to afford the hydrazino derivative 21, which was used as a scaffold for getting the derivatives 22-28. Nucleophilic substitution reactions were used for getting the compounds 29-35 from chloro-thieno[2,3-d]pyrimidine 20. In the way of anticancer therapeutics development, the requisite compounds were assessed for their cytotoxicity in vitro against MCF-7 and HepG-2 cancer cell lines. Twelve compounds showed an interesting antiproliferative potential with IC50 from 23.2 to 95.9 µM. The flow cytometric analysis results showed that hit 4 induces the apoptosis in MCF-7 cells with a significant 26.86% reduction in cell viability. The in vivo study revealed a significant decrease in the solid tumor mass (26.6%) upon treatment with compound 4. Moreover, in silico study as an agonist for inhibitors of JAK2 and prediction study determined their binding energies and predicted their physicochemical properties and drug-likeness scores.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Alkylation , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Hep G2 Cells , Humans , MCF-7 Cells , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/pharmacology
7.
ACS Omega ; 5(10): 5436-5442, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32201835

ABSTRACT

A straightforward green synthesis of 4-methyl-1,2,5,6-tetraazafluoranthen-3(2H)-one 6 is reported from ninhydrin 1 via condensation with ethyl acetoacetate, followed by cyclization with hydrazine hydrate in water as a benign solvent. Tetraazafluoranthen-3-thione 7 was obtained using Lawesson's reagent. N-alkylated tetraazafluoranthen-3-one 8-12 and S-alkylated analogues 13-15 were synthesized via alkylation. The investigation of the unique reactivity of 4-methyl-1,2,5,6-tetraazafluoranthen-3(2H)-one/thione toward the alkylation and aza-Michael additions was explored.

8.
Molecules ; 25(3)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31973234

ABSTRACT

A new series of nitrogen and sulfur heterocyclic systems were efficiently synthesized by linking the following four rings: indole; 1,2,4-triazole; pyridazine; and quinoxaline hybrids. The strength of the acid that catalyzes the condensation of 4-amino-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 1 with aromatic aldehydes controlled the final product. Reflux in glacial acetic acid yielded Schiff bases 2-6, whereas concentrated HCl in ethanol resulted in a cyclization product at C-3 of the indole ring to create indolo-triazolo-pyridazinethiones 7-16. This fascinating cyclization approach was applicable with a wide range of aromatic aldehydes to create the target cyclized compounds in excellent yield. Additionally, the coupling of the new indolo-triazolo-pyridazinethiones 7-13 with 2,3-bis(bromomethyl)quinoxaline, as a linker in acetone and K2CO3, yielded 2,3-bis((5,6-dihydro-14H-indolo[2,3-d]-6-aryl-[1,2,4-triazolo][4,3-b]pyridazin-3 ylsulfanyl)methyl)quinoxalines 19-25 in a high yield. The formation of this new class of heterocyclic compounds in high yields warrants their use for further research. The new compounds were characterized using nuclear magnetic resonance (NMR) and mass spectral analysis. Compound 6 was further confirmed by the single crystal X-ray diffraction technique.


Subject(s)
Heterocyclic Compounds/chemical synthesis , Indoles/chemical synthesis , Nitrogen/chemistry , Pyridazines/chemical synthesis , Quinoxalines/chemical synthesis , Sulfur/chemistry , Triazoles/chemical synthesis , Carbon-13 Magnetic Resonance Spectroscopy , Heterocyclic Compounds/chemistry , Hydrogen Bonding , Indoles/chemistry , Molecular Conformation , Proton Magnetic Resonance Spectroscopy , Pyridazines/chemistry , Quinoxalines/chemistry , Triazoles/chemistry , X-Ray Diffraction
9.
RSC Adv ; 10(33): 19534-19541, 2020 May 20.
Article in English | MEDLINE | ID: mdl-35515454

ABSTRACT

Herein, the mono and dialkylation of pyridazino[4,5-b]indole were achieved with a set of alkylating agents, including amyl bromide, allyl bromide, benzyl bromide and ethyl chloroacetate in the presence of K2CO3/acetone or KOH/DMSO. The hydrazinolysis of mono and di-esters 10 and 11 gave the target hydrazides 12 and 13, which displayed promising, potent, and significant cytotoxic activity against the MCF-7 cell line with IC50 values of 4.25 and 5.35 µm compared to that of the standard drug 5-FU (IC50 6.98 µm), respectively. RT-PCR analysis of the most active compound 12 was performed to determine its mode of action through the up-regulation of pro-apoptotic genes and inhibition of anti-apoptotic and PI3K/AKT/mTOR genes. The findings were consistent with the proposed mechanism illustrated in the in silico study. Further, the in vivo analysis exhibited its potent anti-cancer activity through the prolongation of survival parameters, and inhibition of ascetic fluid parameters in EAC-bearing mice.

10.
Molecules ; 24(24)2019 Dec 06.
Article in English | MEDLINE | ID: mdl-31817609

ABSTRACT

A series of triazolo-thiadiazepines 4a-k were synthesized with excellent yields using dehydrated PTSA as a catalyst in toluene. Two triazolo-thiadiazines were obtained; 8a was formed directly by reflux in ethanol, whereas, PTSA promoted the formation of 8b. The molecular structure of the formed triazolo-thiadiazepines is identical to the imine-form 4a-k and not the enamine-tautomer 6a-k. The structures of the newly synthesized triazolo-thiadiazepines 4a-k and triazolo-thiadiazines 8a-b were elucidated using NMR (1H, and 13C), 2D NMR, HRMS, and X-ray single crystal. Furthermore, 4a was deduced using X-ray single crystal diffraction analysis. These new thiadiazepine hits represent an optimized series of previously synthesized indole-triazole derivatives for the inhibition of EGFR. The cytotoxicity activity against two cancer cell lines including human liver cancer (HEPG-2) and breast cancer (MCF-7) was promising, with IC50 between 12.9 to 44.6 µg/mL and 14.7 to 48.7 µg/mL for the tested cancer cell lines respectively, compared to doxorubicin (IC50 4.0 µg/mL). Docking studies revealed that the thiadiazepine scaffold presented a suitable anchor, allowing good interaction of the various binding groups with the enzyme binding regions and sub-pockets.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Thiadiazines/chemistry , Thiadiazines/chemical synthesis , Triazoles/chemistry , Triazoles/chemical synthesis , Hep G2 Cells , Humans , MCF-7 Cells , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Structure-Activity Relationship
11.
Eur J Med Chem ; 182: 111621, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31442685

ABSTRACT

PARP-1, a nuclear protein, is one of the key member of the DNA repair assembly and thereby emerged as an attractive target in anti-cancer drug discovery. PARP-1 plays a key role in terms of base excision repair, which is an important pathway for cell survival in breast cancer with BRCA1/BRCA2-mutation. In this scenario, the goal of this study was to identify novel prototypes of PARP-1 inhibitors for the development of antitumor therapeutics to treat breast cancer. Thus, a structure-based drug design exploration was first conducted using an in-house library, focusing on triazole-thione and alkylsulfanyl-triazole scaffold. Hits with good binding affinity and better predicted inhibitory potential were also tested for their PARP-1 inhibitory activity. Moreover, the selected compounds were evaluated for their cytotoxicity in-vitro. This approach led to the identification of few novel compounds showing interesting anti-proliferative potential in low micromolar range. Results disclosed that the identified lead molecules were efficiently impeding cell migration and cell proliferation, potentially by interfering with PARP-1 enzymatic activities.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Drug Discovery , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Triazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells , Models, Molecular , Molecular Structure , Poly (ADP-Ribose) Polymerase-1/metabolism , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry , Wound Healing/drug effects
12.
Bioorg Chem ; 85: 293-307, 2019 04.
Article in English | MEDLINE | ID: mdl-30654221

ABSTRACT

Searching for new leads in the battle of cancer will never ends, we herein disclose the design and synthesis of new phthalazine derivatives and their in vitro and in vivo testing for their antiproliferative activity. Phthalazine was selected as a privilege moiety that is incorporated in a big number of anticancer drugs in clinical use or that are still under clinical or preclinical studies. We utilized the drug extension strategy to tailor the designed compounds to fit the EGFR hydrophobic sub pocket and cleft region. The designed phthalazine derivatives was synthesized by linking phthalazine moiety with 1,3,4-oxadiazole-thione and 1,2,4-triazole-thione. Alkylation and glycosylation of the new heterocyclic systems were successfully performed to be used in the drug extension. Coupling of some phthalazine derivatives with different amino acids was also performed to improve the drug selectivity. The synthesized compounds were tested for their antiproliferative activity against cancer cells both in vivo and in vitro. The in vitro activity against hepatocellular carcinoma (HepG2 cell line) ranged from 5.7 µg/mL to 43.4 µg/mL. Compounds 31a and 16 were the most active with an IC50 5.7 µg/mL and 7.09 µg/mL, respectively compared to the standard compound doxorubicin (4.0 µg/mL). In vivo, compounds 10 and 16 showed IC50 values 7.25 µg/mL and 7.5 µg/mL, respectively compared to the standard compound cisplatin (IC50 9.0 µg/mL). In silico, testing of the phthalazine derivatives showed that they are good inhibitors for EGFR. The docking studies substantiated compounds 4, 10, 16 and 31a as new lead compounds and identified Arg841 as a key residue in the cleft region for binding stronger inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , ErbB Receptors/antagonists & inhibitors , Phthalazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Carcinoma, Hepatocellular/drug therapy , Cell Proliferation/drug effects , Cisplatin/pharmacology , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Molecular Docking Simulation , Phthalazines/chemical synthesis , Phthalazines/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism
13.
Eur J Med Chem ; 125: 360-371, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27688190

ABSTRACT

Three sets of substituted indolyl-triazoles were synthesized by the alkylation of 1,2-dihydro-5-(1H-indol-2-yl)-1,2,4-triazole-3-thione with different alkyl halides. The use of pyridine restricted the alkylation to sulfur. Whereas, upon using K2CO3, the alkylation exceeded sulfur to one of the remaining triazole nitrogens. The assignment of which nitrogen is alkylated besides sulfur is made for the first time using X-ray analysis of single crystals and 2D NMR which indicated that S-, 2-N-isomers will be preferably formed over the S-, 1-N-isomers. The antiproliferative activity on HEPG-2 and MCF-7 cancer cell lines was tested. The results showed that compound 2a is the most active with an IC50 3.58 µg/mL and 4.53 µg/mL for HEPG-2 and MCF-7 respectively and compound 7 is the least active with an IC50 > 100 µg/mL compared to the standard drug doxorubicin (IC50 4.0 µg/mL). The interaction of the synthesized compounds with tyrosine kinases, namely, Akt, PI3, and EGFR was also studied using molecular docking simulation to predict their mode of action which will drive future work directions.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Indoles/chemistry , Indoles/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Benzyl Compounds/chemistry , Benzyl Compounds/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Drug Design , Humans , Molecular Docking Simulation , Neoplasms/drug therapy
14.
Chem Cent J ; 10: 22, 2016.
Article in English | MEDLINE | ID: mdl-27127538

ABSTRACT

BACKGROUND: 1,2,4-Triazole3-thiones are good scaffolds for preparation of new lead compounds. Their derivatives attracted the attention of chemists due to their wide spectrum of biological activities. Alkylsulfanyl-1,2,4-triazoles have three nucleophilic sites (nitrogens) ready for reaction with electrophiles. Herein, new regioselective isomers were synthesized by the reaction of benzylsulfanyl-1,2,4-triazole with various dihaloalkanes. Regioselectivity was determined by X-ray crystallography and NMR. RESULTS: Coupling of 3-benzylsufanyl-5-(1H-indolyl)-1,2,4-triazole with dibromomethane, 1,2-dichloroethane, 1,3-dibromopropane and di(bromomethyl)quinoxaline was investigated in the presence of potassium carbonate in acetone. In the case of dibromomethane three different bis(triazolyl)methane isomers (-N (1)-CH2-N (1)-4, -N (1)-CH2-N (2)-5, -N (2)-CH2-N (2)-6) were formed in which the two bromide atoms were replaced by two triazole moieties. Among these isomers the reaction was regioselective towards the -N (1)-CH2-N (2)-5 isomer due to the steric effect. In the case of 1,3-dibromopropane two compounds were obtained due to the alkylation at N(2) to give 2-(3-bromopropyl)-triazole 8 and alkylation at N(1) was followed by cyclization at the indole nitrogen to form a condensed indolo-triazolo-diazepine 10. Upon alkylation of 3-benzylsufanyl-5-(1H-indolyl)-1,2,4-triazole with di(bromomethyl)quinoxaline, two bis(triazolyl-methyl)quinoxaline isomers were separated and characterized as (-N (1)-CH2-N (1)-) 11 and (-N (2)-CH2-N (2)-) 12. Single-crystal X-ray diffraction assisted the elucidation and confirmation of the structures of the isomers. An AM1 theoretical study explained the regioselectivity of the alkylation. CONCLUSIONS: On reacting S-protected 1,2,4-triazoles with various alkylating agents, only N(1) and N(2) attack the electrophilic carbons. N(2) alkylated isomers are preferentially formed. Graphical abstract.

15.
Molecules ; 21(3): 333, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26978331

ABSTRACT

Successful alkylations of the nitrogen of ethyl indol-2-carboxylate were carried out using aq. KOH in acetone. The respective N-alkylated acids could be obtained without separating the N-alkylated esters by increasing the amount of KOH and water. The use of NaOMe in methanol led to transesterification instead of the alkylation, while the use of NaOEt led to low yields of the N-alkylated acids. Hydrazinolysis of the ester gave indol-2-carbohydrazide which then was allowed to react with different aromatic aldehydes and ketones in ethanol catalyzed by acetic acid. Indol-2-thiosemicarbazide was used in a heterocyclization reaction to form thiazoles. The new structures were confirmed using NMR, mass spectrometry and X-ray single crystal analysis.


Subject(s)
Carboxylic Acids/chemistry , Indoles/chemical synthesis , Aldehydes/chemistry , Alkylation , Esters/chemistry , Hydrolysis , Indoles/chemistry , Ketones/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , X-Ray Diffraction
16.
Eur J Med Chem ; 66: 106-13, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23792321

ABSTRACT

Glycosylation of 1,2-Dihydro-5-(1H-indol-2-yl)-1,2,4-triazole-3-thione with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide, 2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl bromide and 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-D-glucopyranosyl chloride was investigated in the presence of Et3N and K2CO3 as acid scavengers. A regioselective S-glycosides were obtained by using Et3N whereas, using K2CO3 gave a mixtures of two hybrids having two glycosidic bonds. The two products of each mixture were separated and characterized as S,N(1)- and S,N(2)-bis(glycosylated) derivatives. The structures of the newly synthesized compounds were elucidated by (1)H NMR, (13)C NMR, 2D NMR and mass spectra. The compounds were screened for their antibacterial and antifungal activities. Some compounds exhibited strong inhibition activity compared with the reference drugs (chloramphenicol and baneocin).


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Glycosides/chemical synthesis , Glycosides/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Triazoles/chemical synthesis , Triazoles/pharmacology , Anti-Infective Agents/chemistry , Bacteria/drug effects , Fungi/drug effects , Glycosides/chemistry , Glycosylation , Indoles/chemistry , Stereoisomerism , Substrate Specificity , Triazoles/chemistry
17.
Beilstein J Org Chem ; 9: 135-46, 2013.
Article in English | MEDLINE | ID: mdl-23400104

ABSTRACT

Glycosylations of 5-(1H-indol-2-yl)-1,3,4-oxadiazoline-2(3H)-thione delivered various degrees of S- and/or N-glycosides depending on the reaction conditions. S-Glycosides were obtained regiospecifically by grinding oxadiazolinethiones with acylated α-D-glycosyl halides in basic alumina, whereas 3-N-(glycosyl)oxadiazolinethiones were selectively obtained by reaction with HgCl(2) followed by heating the resultant chloromercuric salt with α-D-glycosyl halides in toluene under reflux. On using Et(3)N or K(2)CO(3) as a base, mixtures of S- (major degree) and N-glycosides (minor degree) were obtained. Pure 3-N-(glycosyl)oxadiazolinethiones can also be selectively obtained from glycosylsulfanyloxadiazoles by the thermal S→N migration of the glycosyl moiety, which is proposed to occur by a tight-ion-pair mechanism. Thermal S→N migration of the glycosyl moiety can be used for purification of mixtures of S- or N-glycosides to obtain the pure N-glycosides. The aminolysis of the respective S- or N-glycosides with ammonia in aqueous methanol served as further confirmation of their structures. While in S-glycosides the glycosyl moiety was cleaved off again, 3-N-(glycosyl)oxadiazolinethiones showed a ring opening of the oxadiazoline ring (without affecting the glycosyl moiety) to give N-(glycosyl)thiosemicarbazides. Herewith, a new synthetic access to one of the four classes of glycosylthiosemicarbazides was found. The ultimate confirmation of new structures was achieved by X-ray crystallography. Finally, action of ammonia on benzylated 3-N-(galactosyl)oxadiazolinethione unexpectedly yielded 3-N-(galactosyl)triazolinethione. This represents a new path to the conversion of glycosyloxadiazolinethiones to new glycosyltriazolinethione nucleosides, which was until now unknown.

18.
J Enzyme Inhib Med Chem ; 28(1): 105-12, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22145639

ABSTRACT

A series of S- and N-alkylated indolyloxadiazoles 2-7 were prepared. All compounds were tested for their immunomodulatory activity against T-cell proliferation, oxidative burst and cytokine analysis. Compounds 1, 2a, 2b, 2c and 2k demonstrated highly significant (P ≤ 0.005) inhibition on PHA activated T-cell proliferation with IC(50) less than 3 µg/mL concentration, while 3b exert a moderate inhibitory effect with IC(50) 8.6 µg/mL. Among all compounds of the series, only 2h was found to suppress phagocytes ROS production (IC(50) 2.4 µg/mL) in luminol-based chemiluminescence (CL) assay. Compounds 2a-k have stimulatory effect on proinflammatory cytokine predominantly IL-1ß but no effect on IL-4 and NO production indicating that these compounds might have selective inhibitory effect on T-cell proliferation. Cytotoxic effect on T-cell proliferation was tested on NIH-3T3 mouse fibroblast normal cell line. All compounds were found to be free from toxic effects up to 100 µM concentration.


Subject(s)
Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Indoles/chemistry , T-Lymphocytes/drug effects , Alkylation , Animals , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Humans , Indoles/chemical synthesis , Inhibitory Concentration 50 , Interleukin-1beta/metabolism , Interleukin-4/metabolism , Luminescent Measurements , Mice , NIH 3T3 Cells/drug effects , Nitric Oxide/metabolism , Phagocytes/drug effects , Phagocytes/metabolism , Reactive Oxygen Species/metabolism , Respiratory Burst/drug effects , Structure-Activity Relationship , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...