Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37514675

ABSTRACT

The energy consumption of a heating, ventilation, and air conditioning (HVAC) system represents a large amount of the total for a commercial or civic building. In order to optimize the system performance and to increase the comfort of people living or working in a building, it is necessary to monitor the relevant parameters of the circulating air flux. To this end, an array of sensors (i.e., temperature, humidity, and CO2 percentage sensors) is usually deployed along the aeraulic ducts and/or in various rooms. Generally, these sensors are powered by wires or batteries, but both methods have some drawbacks. In this paper, a possible solution to these drawbacks is proposed. It presents a wireless sensor node powered by an Energy Harvesting (EH) device acted on by the air flux itself. The collected data are transmitted to a central unit via a LoRa radio channel. The EH device can be placed in air ducts or close to air outlets.

2.
Nat Mater ; 2(4): 233-6, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12690395

ABSTRACT

The role of surface roughness in contact mechanics is relevant to processes ranging from adhesion to friction, wear and lubrication. It also promises to have a deep impact on applied science, including coatings technology and design of microelectromechanical systems. Despite the considerable results achieved by indentation experiments, particularly in the measurement of bulk hardness on nanometre scales, the contact behaviour of realistic surfaces, showing random multiscale roughness, remains largely unknown. Here we report experimental results concerning the mechanical response of self-affine thin films indented by a micrometric flat probe. The specimens, made of cluster-assembled carbon or of sexithienyl, an organic molecular material, were chosen as prototype systems for the broad class of self-affine fractal interfaces, today including surfaces grown under non-equilibrium conditions, fractures, manufactured metal surfaces and solidified liquid fronts. We observe that a regime exists in which roughness drives the contact mechanics: in this range surface stiffness varies by a few orders of magnitude on small but significant changes of fractal parameters. As a consequence, we demonstrate that soft solid interfaces can be appreciably strengthened by reducing both fractal dimension and surface roughness. This indicates a general route for tailoring the mechanical properties of solid bodies.


Subject(s)
Carbon/chemistry , Fractals , Hardness Tests/instrumentation , Materials Testing/instrumentation , Microscopy, Atomic Force/methods , Elasticity , Equipment Design , Hardness , Hardness Tests/methods , Materials Testing/methods , Mechanics , Models, Chemical , Models, Theoretical , Nanotechnology/instrumentation , Nanotechnology/methods , Sensitivity and Specificity , Surface Properties , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...