Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-37732175

ABSTRACT

Rapid and high-fidelity phosphorylation of two serines (S32 and S36) of IκBα by a prototype Ser/Thr kinase IKK2 is critical for fruitful canonical NF-κB activation. Here, we report that IKK2 is a dual specificity Ser/Thr kinase that autophosphorylates itself at tyrosine residues in addition to its activation loop serines. Mutation of one such tyrosine, Y169, located in proximity to the active site, to phenylalanine, renders IKK2 inactive for phosphorylation of S32 of IκBα. Surprisingly, auto-phosphorylated IKK2 relayed phosphate group(s) to IκBα without ATP when ADP is present. We also observed that mutation of K44, an ATP-binding lysine conserved in all protein kinases, to methionine renders IKK2 inactive towards specific phosphorylation of S32 or S36 of IκBα, but not non-specific substrates. These observations highlight an unusual evolution of IKK2, in which autophosphorylation of tyrosine(s) in the activation loop and the invariant ATP-binding K44 residue define its signal-responsive substrate specificity ensuring the fidelity of NF-κB activation.

2.
J Phys Chem Lett ; 11(14): 5569-5576, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32573237

ABSTRACT

Extracellular vesicles (EVs), naturally occurring nanosized vesicles secreted from cells, are essential for intercellular communication. They carry unique biomolecules on the surface or interior that are of great interest as biomarkers for various pathological conditions such as cancer. In this work, we use high-resolution atomic force microscopy (AFM) and spectroscopy (AFS) techniques to demonstrate differences between EVs derived from colon cancer cells and colon epithelial cells at the single-vesicle level. We observe that EV populations are significantly increased in the cancer cell media compared to the normal cell EVs. We show that both EVs display an EV marker, CD9, while EVs derived from the cancer cells are slightly higher in density. Hyaluronan (HA) is a nonsulfated glycosaminoglycan linked to malignant tumor growth according to recent reports. Interestingly, at the single-vesicle level, colon cancer EVs exhibit significantly increased HA surface densities compared to the normal EVs. Spectroscopic measurements such as Fourier transform infrared (FT-IR), circular dichroism (CD), and Raman spectroscopy unequivocally support the AFM and AFS measurements. To our knowledge, it represents the first report of detecting HA-coated EVs as a potential colon cancer biomarker. Taken together, this sensitive approach will be useful in identifying biomarkers in the early stages of detection and evaluation of cancer.


Subject(s)
Biomarkers, Tumor/analysis , Colonic Neoplasms/metabolism , Extracellular Vesicles/metabolism , Hyaluronic Acid/analysis , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Colonic Neoplasms/pathology , Epithelial Cells/metabolism , Humans , Hyaluronic Acid/metabolism , Microscopy, Atomic Force , Spectrophotometry, Atomic , Tetraspanin 29/analysis
4.
Biochem J ; 476(10): 1465-1482, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31048496

ABSTRACT

Ubiquitin RING E3 ligases (E3s) catalyze ubiquitin (Ub) transfer to their substrates by engaging E2∼Ub intermediates with the help of their RING domains. Different E3s have been found to contain a conserved tryptophan residue in their RING that plays an essential role in E2 binding and, hence, enzymatic activity. Many active E3s, however, lack this specific residue. We mined through the existing data to observe that the conservation of the tryptophan and quaternary organization of the RING domains are remarkably correlated. Monomeric RINGs possess the tryptophan while all well-characterized dimeric RINGs, except RNF8, contain other amino acid residues. Biochemical analyses on representative E3s and their mutants reveal that the tryptophan is essential for optimal enzymatic activity of monomeric RINGs whereas dimeric E3s with tryptophan display hyperactivity. Most critically, the introduction of the tryptophan restores the activity of inactive monomeric RNF4 mutants, an obligatory dimeric E3. Binding studies indicate that monomeric RINGs retained the tryptophan for their optimal functionality to compensate for weak Ub binding. On the other hand, tryptophan was omitted from dimeric RINGs during the course of evolution to prevent unwanted modifications and allow regulation of their activity through oligomerization.


Subject(s)
Nuclear Proteins/chemistry , Protein Multimerization , Transcription Factors/chemistry , Tryptophan/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitin/chemistry , Humans , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Transcription Factors/genetics , Transcription Factors/metabolism , Tryptophan/genetics , Tryptophan/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL