Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Tissue Eng ; 14: 20417314231177838, 2023.
Article in English | MEDLINE | ID: mdl-37362902

ABSTRACT

Auxetic materials are known for their unique ability to expand/contract in multiple directions when stretched/compressed. In other words, they exhibit a negative Poisson's ratio, which is usually positive for most of materials. This behavior appears in some biological tissues such as human skin, where it promotes wound healing by providing an enhanced mechanical support and facilitating cell migration. Skin tissue engineering has been a growing research topic in recent years, largely thanks to the rapid development of 3D printing techniques and technologies. The combination of computational studies with rapid manufacturing and tailored designs presents a huge potential for the future of personalized medicine. Overall, this review article provides a comprehensive overview of the current state of research on auxetic constructs for skin healing applications, highlighting the potential of auxetics as a promising treatment option for skin wounds. The article also identifies gaps in the current knowledge and suggests areas for future research. In particular, we discuss the designs, materials, manufacturing techniques, and also the computational and experimental studies on this topic.

2.
Biomacromolecules ; 24(6): 2879-2891, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37249509

ABSTRACT

The extracellular matrix (ECM) plays an important regulatory role in the development and progression of tumoral tissue. Its functions and properties are crucial in determining tumor cell behavior such as invasion, migration, and malignancy development. Our study explores the role of collagen type I in cancer development and spread using engineered tumor models like multicellular spheroids grown in collagen-based hydrogels to simulate early tumor formation. We employ microfluidic techniques to test the hypothesis that (i) adding Laponite nanoclay to collagen hydrogels modifies mechanical and rheological properties and (ii) changing the stiffness of the collagen microenvironment affects tumor spheroid growth. Our findings support our theories and suggest the use of ECM components and engineered tumor models in cancer research, offering a biocompatible and biomimetic method to tailor the mechanical properties of conventional collagen hydrogels.


Subject(s)
Collagen , Hydrogels , Hydrogels/pharmacology , Hydrogels/metabolism , Cell Line, Tumor , Collagen/metabolism , Extracellular Matrix/metabolism , Spheroids, Cellular/metabolism , Tumor Microenvironment
3.
Br J Cancer ; 128(6): 967-981, 2023 04.
Article in English | MEDLINE | ID: mdl-36572730

ABSTRACT

BACKGROUND: The TGF-ß1 transcription factor SMAD3 is epigenetically repressed in tumour-associated fibroblasts (TAFs) from lung squamous cell carcinoma (SCC) but not adenocarcinoma (ADC) patients, which elicits a compensatory increase in SMAD2 that renders SCC-TAFs less fibrotic. Here we examined the effects of altered SMAD2/3 in fibroblast migration and its impact on the desmoplastic stroma formation in lung cancer. METHODS: We used a microfluidic device to examine descriptors of early protrusions and subsequent migration in 3D collagen gels upon knocking down SMAD2 or SMAD3 by shRNA in control fibroblasts and TAFs. RESULTS: High SMAD3 conditions as in shSMAD2 fibroblasts and ADC-TAFs exhibited a migratory advantage in terms of protrusions (fewer and longer) and migration (faster and more directional) selectively without TGF-ß1 along with Erk1/2 hyperactivation. This enhanced migration was abrogated by TGF-ß1 as well as low glucose medium and the MEK inhibitor Trametinib. In contrast, high SMAD2 fibroblasts were poorly responsive to TGF-ß1, high glucose and Trametinib, exhibiting impaired migration in all conditions. CONCLUSIONS: The basal migration advantage of high SMAD3 fibroblasts provides a straightforward mechanism underlying the larger accumulation of TAFs previously reported in ADC compared to SCC. Moreover, our results encourage using MEK inhibitors in ADC-TAFs but not SCC-TAFs.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Cancer-Associated Fibroblasts , Lung Neoplasms , Humans , Adenocarcinoma/pathology , Cancer-Associated Fibroblasts/metabolism , Collagen , Fibroblasts/metabolism , Glucose/pharmacology , Lung Neoplasms/pathology , Mitogen-Activated Protein Kinase Kinases , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism
4.
BMC Microbiol ; 22(1): 211, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36045335

ABSTRACT

Macrophages play an essential role in the process of recognition and containment of microbial infections. These immune cells are recruited to infectious sites to reach and phagocytose pathogens. Specifically, in this article, bacteria from the genus Mycobacterium, Salmonella and Escherichia, were selected to study the directional macrophage movement towards different bacterial fractions. We recreated a three-dimensional environment in a microfluidic device, using a collagen-based hydrogel that simulates the mechanical microarchitecture associated to the Extra Cellular Matrix (ECM). First, we showed that macrophage migration is affected by the collagen concentration of their environment, migrating greater distances at higher velocities with decreasing collagen concentrations. To recreate the infectious microenvironment, macrophages were exposed to lateral gradients of bacterial fractions obtained from the intracellular pathogens M. tuberculosis and S. typhimurium. Our results showed that macrophages migrated directionally, and in a concentration-dependent manner, towards the sites where bacterial fractions are located, suggesting the presence of attractants molecules in all the samples. We confirmed that purified M. tuberculosis antigens, as ESAT-6 and CFP-10, stimulated macrophage recruitment in our device. Finally, we also observed that macrophages migrate towards fractions from non-pathogenic bacteria, such as M. smegmatis and Escherichia coli. In conclusion, our microfluidic device is a useful tool which opens new perspectives to study the recognition of specific antigens by innate immune cells.


Subject(s)
Escherichia coli , Macrophages , Mycobacterium tuberculosis , Tuberculosis , Cell Culture Techniques, Three Dimensional , Collagen , Humans , Macrophages/metabolism , Macrophages/microbiology , Microfluidics/methods , Salmonella
5.
Comput Biol Med ; 148: 105898, 2022 09.
Article in English | MEDLINE | ID: mdl-35964467

ABSTRACT

Bone mechanical and biological properties are closely linked to its internal tissue composition and mass distribution, which are in turn governed by the purposeful action of the basic multicellular units (BMUs). The orchestrated action of osteoclasts and osteoblasts, the resorbing and forming tissue cells respectively, in BMUs is responsible for tissue maintenance, repair and adaptation to changing load demands through the phenomenon known as remodelling. In this work, a computational mechano-biological model of bone remodelling based on the inhibitory theory and a new scheme of bone resorption introduced previously in a 2D model, is extended to a 3D model of the real external geometry of a femur under normal walking loads. Starting from a uniform apparent density (ratio of tissue local mass to total local volume) distribution, the BMU action can be shown to lead naturally to an internal density distribution similar to that of a real bone, provided that the initial density value is high enough to avoid unrealistic final mass deposition in zones of high energy density and excessive damage. Physiological internal density values are reached throughout the whole 3D geometry, and at the same time a 'boomerang'-like relationship between apparent and material density (ratio of tissue mass to tissue volume) emerges naturally under the proposed remodelling scheme. It is also shown here that bone-specific surface is a key parameter that determines the intensity of BMU action linked to the mechanical and biological requirements. Finally, by engaging in simulations of bone in disuse, we were able to confirm the appropriate selection of the model parameters. As an example, our results show good agreement with experimental measurements of bone mass on astronauts a fact that strengthens our belief in the insightful nature of our novel 3D computational model.


Subject(s)
Bone Density , Bone Remodeling , Bone and Bones , Models, Biological , Osteoclasts , Stress, Mechanical
6.
Integr Biol (Camb) ; 14(8-12): 212-227, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36756930

ABSTRACT

Fibroblasts play an essential role in tissue repair and regeneration as they migrate to wounded areas to secrete and remodel the extracellular matrix. Fibroblasts recognize chemical substances such as growth factors, which enhance their motility towards the wounded tissues through chemotaxis. Although several studies have characterized single-cell fibroblast motility before, the migration patterns of fibroblasts in response to external factors have not been fully explored in 3D environments. We present a study that combines experimental and computational efforts to characterize the effect of chemical stimuli on the invasion of 3D collagen matrices by fibroblasts. Experimentally, we used microfluidic devices to create chemical gradients using collagen matrices of distinct densities. We evaluated how cell migration patterns were affected by the presence of growth factors and the mechanical properties of the matrix. Based on these results, we present a discrete-based computational model to simulate cell motility, which we calibrated through the quantitative comparison of experimental and computational data via Bayesian optimization. By combining these approaches, we predict that fibroblasts respond to both the presence of chemical factors and their spatial location. Furthermore, our results show that the presence of these chemical gradients could be reproduced by our computational model through increases in the magnitude of cell-generated forces and enhanced cell directionality. Although these model predictions require further experimental validation, we propose that our framework can be applied as a tool that takes advantage of experimental data to guide the calibration of models and predict which mechanisms at the cellular level may justify the experimental findings. Consequently, these new insights may also guide the design of new experiments, tailored to validate the variables of interest identified by the model.


Subject(s)
Collagen , Extracellular Matrix , Bayes Theorem , Collagen/chemistry , Cell Movement/physiology , Extracellular Matrix/metabolism , Fibroblasts/metabolism
7.
Biomicrofluidics ; 15(5): 054102, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34548891

ABSTRACT

Extravasation of circulating cells is an essential process that governs tissue inflammation and the body's response to pathogenic infection. To initiate anti-inflammatory and phagocytic functions within tissues, immune cells must cross the vascular endothelial barrier from the vessel lumen to the subluminal extracellular matrix. In this work, we present a microfluidic approach that enables the recreation of a three-dimensional, perfused endothelial vessel formed by human endothelial cells embedded within a collagen-rich matrix. Monocytes are introduced into the vessel perfusate, and we investigate the role of luminal flow and collagen concentration on extravasation. In vessels conditioned with the flow, increased monocyte adhesion to the vascular wall was observed, though fewer monocytes extravasated to the collagen hydrogel. Our results suggest that the lower rates of extravasation are due to the increased vessel integrity and reduced permeability of the endothelial monolayer. We further demonstrate that vascular permeability is a function of collagen hydrogel mass concentration, with increased collagen concentrations leading to elevated vascular permeability and increased extravasation. Collectively, our results demonstrate that extravasation of monocytes is highly regulated by the structural integrity of the endothelial monolayer. The microfluidic approach developed here allows for the dissection of the relative contributions of these cues to further understand the key governing processes that regulate circulating cell extravasation and inflammation.

8.
Microsc Microanal ; 25(4): 971-981, 2019 08.
Article in English | MEDLINE | ID: mdl-31210124

ABSTRACT

Collagen microstructure is closely related to the mechanical properties of tissues and affects cell migration through the extracellular matrix. To study these structures, three-dimensional (3D) in vitro collagen-based gels are often used, attempting to mimic the natural environment of cells. Some key parameters of the microstructure of these gels are fiber orientation, fiber length, or pore size, which define the mechanical properties of the network and therefore condition cell behavior. In the present study, an automated tool to reconstruct 3D collagen networks is used to extract the aforementioned parameters of gels of different collagen concentration and determine how their microstructure is affected by the presence of cells. Two different experiments are presented to test the functionality of the method: first, collagen gels are embedded within a microfluidic device and collagen fibers are imaged by using confocal fluorescence microscopy; second, collagen gels are directly polymerized in a cell culture dish and collagen fibers are imaged by confocal reflection microscopy. Finally, we investigate and compare the collagen microstructure far from and in the vicinities of MDA-MB 23 cells, finding that cell activity during migration was able to strongly modify the orientation of the collagen fibers and the porosity-related values.


Subject(s)
Biomechanical Phenomena , Chemical Phenomena , Collagen/metabolism , Hydrogels , Tissue Engineering/methods , Tissue Scaffolds , Cell Line , Cell Movement , Humans , Imaging, Three-Dimensional , Microscopy, Confocal , Microscopy, Fluorescence
9.
Integr Biol (Camb) ; 11(11): 404-413, 2019 12 31.
Article in English | MEDLINE | ID: mdl-31922533

ABSTRACT

Protrusions are one of the structures that cells use to sense their surrounding environment in a probing and exploratory manner as well as to communicate with other cells. In particular, osteoblasts embedded within a 3D matrix tend to originate a large number of protrusions compared to other type of cells. In this work, we study the role that mechanochemical properties of the extracellular matrix (ECM) play on the dynamics of these protrusions, namely, the regulation of the size and number of emanating structures. In addition, we also determine how the dynamics of the protrusions may lead the 3D movement of the osteoblasts. Significant differences were found in protrusion size and cell velocity, when degradation activity due to metalloproteases was blocked by means of an artificial broad-spectrum matrix metalloproteinase inhibitor, whereas stiffening of the matrix by introducing transglutaminase crosslinking, only induced slight changes in both protrusion size and cell velocity, suggesting that the ability of cells to create a path through the matrix is more critical than the matrix mechanical properties themselves. To confirm this, we developed a cell migration computational model in 3D including both the mechanical and chemical properties of the ECM as well as the protrusion mechanics, obtaining good agreement with experimental results.


Subject(s)
Cell Movement , Computer Simulation , Extracellular Matrix/metabolism , GTP-Binding Proteins/chemistry , Osteoblasts/cytology , Transglutaminases/chemistry , Biopolymers/chemistry , Cell Culture Techniques , Cell Line , Humans , Hydrogels/chemistry , Lab-On-A-Chip Devices , Models, Theoretical , Protein Glutamine gamma Glutamyltransferase 2 , Recombinant Proteins/chemistry , Tubulin/chemistry
10.
J Mech Behav Biomed Mater ; 83: 52-62, 2018 07.
Article in English | MEDLINE | ID: mdl-29677555

ABSTRACT

Osteoblast migration is a crucial process in bone regeneration, which is strongly regulated by interstitial fluid flow. However, the exact role that such flow exerts on osteoblast migration is still unclear. To deepen the understanding of this phenomenon, we cultured human osteoblasts on 3D microfluidic devices under different fluid flow regimes. Our results show that a slow fluid flow rate by itself is not able to alter the 3D migratory patterns of osteoblasts in collagen-based gels but that at higher fluid flow rates (increased flow velocity) may indirectly influence cell movement by altering the collagen microstructure. In fact, we observed that high fluid flow rates (1 µl/min) are able to alter the collagen matrix architecture and to indirectly modulate the migration pattern. However, when these collagen scaffolds were crosslinked with a chemical crosslinker, specifically, transglutaminase II, we did not find significant alterations in the scaffold architecture or in osteoblast movement. Therefore, our data suggest that high interstitial fluid flow rates can regulate osteoblast migration by means of modifying the orientation of collagen fibers. Together, these results highlight the crucial role of the matrix architecture in 3D osteoblast migration. In addition, we show that interstitial fluid flow in conjunction with the matrix architecture regulates the osteoblast morphology in 3D.


Subject(s)
Cell Movement , Extracellular Fluid/metabolism , Osteoblasts/cytology , Animals , Cattle , Cell Culture Techniques/instrumentation , Humans , Lab-On-A-Chip Devices , Porosity
11.
PLoS One ; 12(3): e0173228, 2017.
Article in English | MEDLINE | ID: mdl-28306746

ABSTRACT

Bone is a living tissue whose main mechanical function is to provide stiffness, strength and protection to the body. Both stiffness and strength depend on the mineralization of the organic matrix, which is constantly being remodelled by the coordinated action of the bone multicellular units (BMUs). Due to the dynamics of both remodelling and mineralization, each sample of bone is composed of structural units (osteons in cortical and packets in cancellous bone) created at different times, therefore presenting different levels of mineral content. In this work, a computational model is used to understand the feedback between the remodelling and the mineralization processes under different load conditions and bone porosities. This model considers that osteoclasts primarily resorb those parts of bone closer to the surface, which are younger and less mineralized than older inner ones. Under equilibrium loads, results show that bone volumes with both the highest and the lowest levels of porosity (cancellous and cortical respectively) tend to develop higher levels of mineral content compared to volumes with intermediate porosity, thus presenting higher material densities. In good agreement with recent experimental measurements, a boomerang-like pattern emerges when plotting apparent density at the tissue level versus material density at the bone material level. Overload and disuse states are studied too, resulting in a translation of the apparent-material density curve. Numerical results are discussed pointing to potential clinical applications.


Subject(s)
Bone Remodeling , Calcification, Physiologic , Humans
12.
PLoS Comput Biol ; 13(1): e1005277, 2017 01.
Article in English | MEDLINE | ID: mdl-28114384

ABSTRACT

Cells assemble numerous types of actomyosin bundles that generate contractile forces for biological processes, such as cytokinesis and cell migration. One example of contractile bundles is a transverse arc that forms via actomyosin-driven condensation of actin filaments in the lamellipodia of migrating cells and exerts significant forces on the surrounding environments. Structural reorganization of a network into a bundle facilitated by actomyosin contractility is a physiologically relevant and biophysically interesting process. Nevertheless, it remains elusive how actin filaments are reoriented, buckled, and bundled as well as undergo tension buildup during the structural reorganization. In this study, using an agent-based computational model, we demonstrated how the interplay between the density of myosin motors and cross-linking proteins and the rigidity, initial orientation, and turnover of actin filaments regulates the morphological transformation of a cross-linked actomyosin network into a bundle and the buildup of tension occurring during the transformation.


Subject(s)
Actin Cytoskeleton/physiology , Actomyosin/physiology , Cytoskeletal Proteins/physiology , Models, Biological , Molecular Motor Proteins/physiology , Morphogenesis/physiology , Actin Cytoskeleton/ultrastructure , Animals , Computer Simulation , Cytoskeleton/physiology , Cytoskeleton/ultrastructure , Elastic Modulus/physiology , Humans , Mechanotransduction, Cellular/physiology , Stress, Mechanical
13.
J Biomech ; 49(8): 1340-1346, 2016 05 24.
Article in English | MEDLINE | ID: mdl-26556715

ABSTRACT

Angiogenesis, as example of collective migration of endothelial cells (ECs), is the main dynamic process that culminates in sprout formation from existing vessels. After tissue injury, the vascularity is interrupted, triggering the regeneration process and the release of different growth factors (GFs). The main aim of this work is to quantify the effect of specific GFs during the initial stage of sprout formation, namely: VEGF, PDGF-BB, TGFß and BMP-2, all of them involved in regenerative processes. For this purpose, we designed a novel algorithm implemented in Matlab to quantify the advance of the EC monolayer over time and the sprout structure in 3D. Our results show that VEGF is the main regulatory GF on angiogenesis processes, producing longer sprouts with higher frequency. However, the chemoattractant effect of VEGF depends on its concentration and its spatiotemporal location, having a critical impact on the sprout time evolution. PDGF-BB (namely as PDGF) has a global negative effect on both the number and length of sprouts. TGFß enhances sprout length at earlier times, although its effect gradually disappears over time. Finally, BMP-2 produces, overall, less number and shorter sprouts, but was the only GF with a positive evolution at longer times, producing fewer but longer sprouts.


Subject(s)
Human Umbilical Vein Endothelial Cells/physiology , Neovascularization, Physiologic , Bone Morphogenetic Protein 2/physiology , Humans , Microfluidics , Platelet-Derived Growth Factor/physiology , Transforming Growth Factor beta/physiology , Vascular Endothelial Growth Factor A/physiology
14.
Biomech Model Mechanobiol ; 13(2): 451-62, 2014 Apr.
Article in English | MEDLINE | ID: mdl-23783520

ABSTRACT

Adherent cells normally apply forces as a generic means of sensing and responding to the mechanical nature of their surrounding environment. How these forces vary as a function of the extracellular rigidity is critical to understanding the regulatory functions that drive important phenomena such as wound healing or muscle contraction. In recognition of this fact, experiments have been conducted to understand cell rigidity-sensing properties under known conditions of the extracellular environment, opening new possibilities for modeling this active behavior. In this work, we provide a physics-based constitutive model taking into account the main structural components of the cell to reproduce its most significant contractile properties such as the traction forces exerted as a function of time and the extracellular stiffness. This model shows how the interplay between the time-dependent response of the acto-myosin contractile system and the elastic response of the cell components determines the mechano-sensing behavior of single cells.


Subject(s)
Mechanotransduction, Cellular , Models, Biological
15.
In Silico Cell Tissue Sci ; 1: 2, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-26290806

ABSTRACT

BACKGROUND: Cells respond to a variety of external stimuli regulated by the environment conditions. Mechanical, chemical and biological factors are of great interest and have been deeply studied. Furthermore, mathematical and computational models have been rapidly growing over the past few years, permitting researches to run complex scenarios saving time and resources. Usually these models focus on specific features of cell migration, making them only suitable to study restricted phenomena. METHODS: Here we present a versatile finite element (FE) cell-scale 3D migration model based on probabilities depending in turn on ECM mechanical properties, chemical, fluid and boundary conditions. RESULTS: With this approach we are able to capture important outcomes of cell migration such as: velocities, trajectories, cell shape and aspect ratio, cell stress or ECM displacements. CONCLUSIONS: The modular form of the model will allow us to constantly update and redefine it as advancements are made in clarifying how cellular events take place.

16.
PLoS One ; 7(11): e49174, 2012.
Article in English | MEDLINE | ID: mdl-23139838

ABSTRACT

Cells modulate themselves in response to the surrounding environment like substrate elasticity, exhibiting structural reorganization driven by the contractility of cytoskeleton. The cytoskeleton is the scaffolding structure of eukaryotic cells, playing a central role in many mechanical and biological functions. It is composed of a network of actins, actin cross-linking proteins (ACPs), and molecular motors. The motors generate contractile forces by sliding couples of actin filaments in a polar fashion, and the contractile response of the cytoskeleton network is known to be modulated also by external stimuli, such as substrate stiffness. This implies an important role of actomyosin contractility in the cell mechano-sensing. However, how cells sense matrix stiffness via the contractility remains an open question. Here, we present a 3-D Brownian dynamics computational model of a cross-linked actin network including the dynamics of molecular motors and ACPs. The mechano-sensing properties of this active network are investigated by evaluating contraction and stress in response to different substrate stiffness. Results demonstrate two mechanisms that act to limit internal stress: (i) In stiff substrates, motors walk until they exert their maximum force, leading to a plateau stress that is independent of substrate stiffness, whereas (ii) in soft substrates, motors walk until they become blocked by other motors or ACPs, leading to submaximal stress levels. Therefore, this study provides new insights into the role of molecular motors in the contraction and rigidity sensing of cells.


Subject(s)
Actomyosin/metabolism , Cells/metabolism , Models, Biological , Actin Cytoskeleton/metabolism , Actins/metabolism , Biomechanical Phenomena , Molecular Motor Proteins/metabolism , Movement , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...