Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 194: 106316, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38150789

ABSTRACT

Ocean acidification has increased due to the enhanced solubility of CO2 in seawater. Mangrove macroalgae in tropical and subtropical coastal regions can benefit from the higher availability of CO2 for photosynthesis and primary production. However, they can be negatively affected by the simultaneously occurring warming and increased salinity in estuaries. Thus, we analyzed the isolated effects of ocean acidification and the interactive effects of increased temperature and salinity on the low molecular weight carbohydrate (LMWC) contents of the mangrove red macroalgae Bostrychia montagnei and Bostrychia calliptera from Brazilian tropical and subtropical populations. Specimens from both climatic niches were tolerant to pH decreased by CO2 enrichment and enhanced their LMWC contents under increased availability of CO2. Specimens from both climatic niches also accumulated their dulcitol and sorbitol contents to cope with warming and salt stress. Nevertheless, temperature of 34 °C was lethal for tropical macroalgae, while 29 °C and 31 °C were lethal for subtropical B. calliptera under salinity of 35. Tropical and subtropical B. montagnei synthesized dulcitol (5-110 mmol kg-1 dry weight) and sorbitol (5-100 mmol kg-1 dry weight) as osmoregulatory, energy and thermal protection compounds, whereas tropical and subtropical B. calliptera synthesized mainly dulcitol (10-210 mmol kg-1 dry weight). Although digeneaside has an energy function in Bostrychia spp., it is not an osmolyte or thermal protection compound. Our data demonstrated that both tropical and subtropical Bostrychia spp. benefit from ocean acidification by CO2 enrichment, increasing their LMWC contents. However, warming and increased salinity in estuaries will be detrimental to them, even they producing protective metabolites. Multifactorial approaches are recommended to investigate whether negative effects of increased temperature and salinity nullify positive effects of ocean acidification on these Bostrychia species/populations.


Subject(s)
Seawater , Seaweed , Seawater/chemistry , Salinity , Hydrogen-Ion Concentration , Carbon Dioxide/analysis , Ocean Acidification , Molecular Weight , Temperature , Carbohydrates , Sorbitol , Galactitol , Oceans and Seas , Global Warming
2.
Mar Environ Res ; 178: 105662, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35642998

ABSTRACT

Increased greenhouse gas concentrations in the Earth's atmosphere have resulted in global change, such as ocean warming and sea level rise. Increased salinity in estuaries is expected as a result of sea level rise and warming. Thus, we analysed the interactive effects of increased temperature and salinity on multiple physiological responses of Bostrychia montagnei and B. calliptera from two biogeographic provinces, Tropical Southwestern Atlantic (TSA) and Warm Temperate Southwestern Atlantic (WTSA). Macroalgae were cultured under three salinities (15, 25 and 35 PSU) and three temperatures: mean sea surface temperature (SST: 27 °C for TSA and 24 °C for WTSA), an RCP8.5 ocean warming scenario (SST + 5 °C), and a maximum temperature to test the algal upper thermal tolerance limits (RCP8.5 + 2 °C). Macroalgae from both localities decreased their growth under increased temperature and salinity. RCP8.5 + 2 °C was lethal for both macroalgae from TSA. RCP8.5 and RCP8.5 + 2 °C at 35 PSU were lethal for B. calliptera from WTSA, due to the interactive effects between increased temperature and salinity. Overall, increased salinity decreased the effective quantum yield and relative electron transport rate in algal photosynthesis. Our results demonstrated that the macroalgae synthesized proteins, carbohydrates (polysaccharides and low molecular weight carbohydrates), and antioxidants to tolerate detrimental temperatures and salinities. Our results also demonstrated that the macroalgae adjusted their pigment contents (phycobiliproteins, total carotenoids, and chlorophyll a) for efficient light-harvesting under thermal and saline stress. Our findings suggest that ocean warming and increased salinity in estuaries will be detrimental to B. montagnei and B. calliptera populations from both biogeographic provinces, especially to those from TSA that already live closer to their upper thermal tolerance limits.


Subject(s)
Rhodophyta , Seaweed , Animals , Birds , Carbohydrates , Chlorophyll A , Global Warming , Oceans and Seas , Salinity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...