Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 7(10): 1600-1609, 2023 10.
Article in English | MEDLINE | ID: mdl-37667000

ABSTRACT

Whether most species are rare or have some intermediate abundance is a long-standing question in ecology. Here, we use more than one billion observations from the Global Biodiversity Information Facility to assess global species abundance distributions (gSADs) of 39 taxonomic classes of eukaryotic organisms from 1900 to 2019. We show that, as sampling effort increases through time, the shape of the gSAD is unveiled; that is, the shape of the sampled gSAD changes, revealing the underlying gSAD. The fraction of species unveiled for each class decreases with the total number of species in that class and increases with the number of individuals sampled, with some groups, such as birds, being fully unveiled. The best statistical fit for almost all classes was the Poisson log-normal distribution. This strong evidence for a universal pattern of gSADs across classes suggests that there may be general ecological or evolutionary mechanisms governing the commonness and rarity of life on Earth.


Subject(s)
Biodiversity , Models, Biological , Humans , Animals , Biological Evolution , Birds
2.
PLoS One ; 16(12): e0259162, 2021.
Article in English | MEDLINE | ID: mdl-34965265

ABSTRACT

Credible estimates suggest that a large number of the nearly 7000 languages in the world could go extinct this century, a prospect with profound cultural, socioeconomic, and political ramifications. Despite its importance, we still have little predictive theory for language dynamics and richness. Critical to the language extinction problem, however, is to understand the dynamics of the number of speakers of languages, the dynamics of language abundance distributions (LADs). Many regional LADs are very similar to the bell-shaped distributions of relative species abundance predicted by neutral theory in ecology. Using the tenets of neutral theory, here we show that LADs can be understood as an equilibrium or disequilibrium between stochastic rates of origination and extinction of languages. However, neutral theory does not fit some regional LADs, which can be explained if the number of speakers has grown systematically faster in some languages than others, due to cultural factors and other non-neutral processes. Only the LADs of Australia and the United States, deviate from a bell-shaped pattern. These deviations are due to the documented higher, non-equilibrium extinction rates of low-abundance languages in these countries.


Subject(s)
Language , Australia , Likelihood Functions , United States
3.
Sci Rep ; 11(1): 21660, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737354

ABSTRACT

The distance decay of community similarity (DDCS) is a pattern that is widely observed in terrestrial and aquatic environments. Niche-based theories argue that species are sorted in space according to their ability to adapt to new environmental conditions. The ecological neutral theory argues that community similarity decays due to ecological drift. The continuum hypothesis provides an intermediate perspective between niche-based theories and the neutral theory, arguing that niche and neutral factors are at the opposite ends of a continuum that ranges from competitive to stochastic exclusion. We assessed the association between niche-based and neutral factors and changes in community similarity measured by Sorensen's index in riparian plant communities. We assessed the importance of neutral processes using network distances and flow connection and of niche-based processes using Strahler order differences and precipitation differences. We used a hierarchical Bayesian approach to determine which perspective is best supported by the results. We used dataset composed of 338 vegetation censuses from eleven river basins in continental Portugal. We observed that changes in Sorensen indices were associated with network distance, flow connection, Strahler order difference and precipitation difference but to different degrees. The results suggest that community similarity changes are associated with environmental and neutral factors, supporting the continuum hypothesis.

4.
Animals (Basel) ; 12(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35011163

ABSTRACT

It is known that species' distributions are influenced by several ecological factors. Nonetheless, the geographical scale upon which the influence of these factors is perceived is largely undefined. We assessed the importance of competition in regulating the distributional limits of species at large geographical scales. We focus on species with similar diets, the European Soricidae shrews, and how interspecific competition changes along climatic gradients. We used presence data for the seven most widespread terrestrial species of Soricidae in Europe, gathered from GBIF, European museums, and climate data from WorldClim. We made use of two Joint Species Distribution Models to analyse the correlations between species' presences, aiming to understand the distinct roles of climate and competition in shaping species' distributions. Our results support three key conclusions: (i) climate alone does not explain all species' distributions at large scales; (ii) negative interactions, such as competition, seem to play a strong role in defining species' range limits, even at large scales; and (iii) the impact of competition on a species' distribution varies along a climatic gradient, becoming stronger at the climatic extremes. Our conclusions support previous research, highlighting the importance of considering biotic interactions when studying species' distributions, regardless of geographical scale.

5.
Front Plant Sci ; 11: 278, 2020.
Article in English | MEDLINE | ID: mdl-32231676

ABSTRACT

Biological collections, including herbarium specimens, are unique sources of biodiversity data presenting a window on the history of the development and accumulation of knowledge of a specific geographical region. Understanding how the process of discovery impacts that knowledge is particularly important for oceanic islands which are often characterized by both high levels of endemic diversity and high proportions of threatened taxa. The archipelagos of the Macaronesian region (i.e. Azores, Canaries, Savages, Madeira, and Cabo Verde) have been the focus of attention for scientific expeditions since the end of the 17th century. However, there is no integrated study describing the historical process of collecting, discovery and description of its flora. Using as a case study the Cabo Verde endemic angiosperm flora, we review the history of collecting in the flora and apply a Bayesian approach to assess the accumulation of species discovery, through time and space across the nine islands of the archipelago. Our results highlight the central role not only of natural characteristics (e.g. area, age, maximum altitude and average value of the terrain ruggedness index) but also historical factors (i.e. the location of major harbors) for the development of knowledge of the flora. The main factors that have determined the process of species description in the archipelago and how this impact our understanding of diversity patterns across archipelagos are discussed.

6.
Sci Rep ; 7(1): 3899, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28634340

ABSTRACT

Species abundance distributions (SAD) are central to the description of diversity and have played a major role in the development of theories of biodiversity and biogeography. However, most work on species abundance distributions has focused on one single spatial scale. Here we used data on arthropods to test predictions obtained with computer simulations on whether dispersal ability influences the rate of change of SADs as a function of sample size. To characterize the change of the shape of the SADs we use the moments of the distributions: the skewness and the raw moments. In agreement with computer simulations, low dispersal ability species generate a hump for intermediate abundance classes earlier than the distributions of high dispersal ability species. Importantly, when plotted as function of sample size, the raw moments of the SADs of arthropods have a power law pattern similar to that observed for the SAD of tropical tree species, thus we conjecture that this might be a general pattern in ecology. The existence of this pattern allows us to extrapolate the moments and thus reconstruct the SAD for larger sample sizes using a procedure borrowed from the field of image analysis based on scaled discrete Tchebichef moments and polynomials.


Subject(s)
Arthropods , Biodiversity , Ecosystem , Population Density , Algorithms , Animals , Models, Theoretical
7.
Nature ; 482(7386): E3-4; author reply E5-6, 2012 Feb 22.
Article in English | MEDLINE | ID: mdl-22358846

ABSTRACT

Arising from F. He & S. P. Hubbell 473, 368-371 (2011). He and Hubbell developed a sampling theory for the species-area relationship (SAR) and the endemics-area relationship (EAR). They argued that the number of extinctions after habitat loss is described by the EAR and that extinction rates in previous studies are overestimates because the EAR is always lower than the SAR. Here we show that their conclusion is not general and depends on the geometry of habitat destruction and the scale of the SAR. We also question their critique of the Millennium Ecosystem Assessment estimates, as those estimates are not dependent on the SAR only, although important uncertainties remain due to other methodological issues.


Subject(s)
Ecosystem , Extinction, Biological , Models, Statistical , Animals
8.
Evolution ; 65(7): 1841-50, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21729042

ABSTRACT

Numerous evolutionary studies have sought to explain the distribution of diversity across the limbs of the tree of life. At the same time, ecological studies have sought to explain differences in diversity and relative abundance within and among ecological communities. Traditionally, these patterns have been considered separately, but models that consider processes operating at the level of individuals, such as neutral biodiversity theory (NBT), can provide a link between them. Here, we compare evolutionary dynamics across a suite of NBT models. We show that NBT can yield phylogenetic tree topologies with imbalance closely resembling empirical observations. In general, metacommunities that exhibit greater disparity in abundance are characterized by more imbalanced phylogenetic trees. However, NBT fails to capture the tempo of diversification as represented by the distribution of branching events through time. We suggest that population-level processes might therefore help explain the asymmetry of phylogenetic trees, but that tree shape might mislead estimates of evolutionary rates unless the diversification process is modeled explicitly.


Subject(s)
Biodiversity , Biological Evolution , Models, Genetic , Biota , Genetic Speciation , Mutation , Phylogeny
9.
Proc Natl Acad Sci U S A ; 105 Suppl 1: 11498-504, 2008 Aug 12.
Article in English | MEDLINE | ID: mdl-18695228

ABSTRACT

New roads, agricultural projects, logging, and mining are claiming an ever greater area of once-pristine Amazonian forest. The Millennium Ecosystems Assessment (MA) forecasts the extinction of a large fraction of Amazonian tree species based on projected loss of forest cover over the next several decades. How accurate are these estimates of extinction rates? We use neutral theory to estimate the number, relative abundance, and range size of tree species in the Amazon metacommunity and estimate likely tree-species extinctions under published optimistic and nonoptimistic Amazon scenarios. We estimate that the Brazilian portion of the Amazon Basin has (or had) 11,210 tree species that reach sizes >10 cm DBH (stem diameter at breast height). Of these, 3,248 species have population sizes >1 million individuals, and, ignoring possible climate-change effects, almost all of these common species persist under both optimistic and nonoptimistic scenarios. At the rare end of the abundance spectrum, however, neutral theory predicts the existence of approximately 5,308 species with <10,000 individuals each that are expected to suffer nearly a 50% extinction rate under the nonoptimistic deforestation scenario and an approximately 37% loss rate even under the optimistic scenario. Most of these species have small range sizes and are highly vulnerable to local habitat loss. In ensembles of 100 stochastic simulations, we found mean total extinction rates of 20% and 33% of tree species in the Brazilian Amazon under the optimistic and nonoptimistic scenarios, respectively.


Subject(s)
Extinction, Biological , Trees/classification , Models, Theoretical , South America , Species Specificity
10.
Am Nat ; 159(2): 138-55, 2002 Feb.
Article in English | MEDLINE | ID: mdl-18707410

ABSTRACT

Although fractals have been applied in ecology for some time, multifractals have, in contrast, received little attention. In this article, we apply multifractals to the species-area relationship and species abundance distributions. We highlight two results: first, species abundance distributions collected at different spatial scales may collapse into a single curve after appropriate renormalization, and second, the power-law form of the species-area relationship and the Shannon, Simpson, and Berger-Parker diversity indices belong to a family of equations relating the species number, species abundance, and area through the moments of the species abundance-probability density function. Explicit formulas for these diversity indices, as a function of area, are derived. Methods to obtain the multifractal spectra from a data set are discussed, and an example is shown with data on tree and shrub species collected in a 50-ha plot on Barro Colorado Island, Panama. Finally, we discuss the implications of the multifractal formalism to the relationship between species range and abundance and the relation between the shape of the species abundance distribution and area.

SELECTION OF CITATIONS
SEARCH DETAIL
...