Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(21): 15576-15586, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757724

ABSTRACT

The magnetic properties of a series of trimetallic (Co,Ni)Fe Prussian blue analogues (PBAs) were investigated by SQUID magnetometry and X-ray magnetic circular dichroism (XMCD) at the three transition metal (TM) K-edges. In turn, the PBA trimetallic series was used as a tool in order to better understand the information contained in TM K-edge XMCD and particularly the chemical nature of the probed species (extended sub-lattice or localized entities). The results show that the magnetic behavior of the compounds is dictated by competing exchange interactions between the Co-Fe and Ni-Fe pairs, without spin frustration. They also show that XMCD at the TM K-edge is a local atomic probe of the element at the N side of the cyanide bridge and a local probe of the absorbing atom and its first magnetic neighbors on the C side of the bridge. At last, XMCD at the TM K-edge turns out to be highly sensitive to very small structural distortions.

2.
ACS Omega ; 7(41): 36366-36378, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36278067

ABSTRACT

To disentangle the information contained in transition-metal K-edge X-ray magnetic circular dichroism (XMCD), two series of Prussian blue analogs (PBAs) were investigated as model compounds. The number of 3d electrons and the magnetic orbitals have been varied on both sites of the bimetallic cyanide polymer by combining with the hexacyanoferrate or the hexacyanochromate entities' various divalent metal ions A2+ (Mn2+, Fe2+, Co2+, Ni2+, and Cu2+). These PBA were studied by Fe and Cr X-ray absorption spectroscopy and XMCD. The results, compared to those obtained at the A K-edges in a previous work, show that transition-metal K-edge XMCD is very sensitive to orbital symmetry and can therefore give valuable information on the local structure of the magnetic centers. Expressions of the intensity of the main 1s → 4p contribution to the signal are proposed for all K-edges and all compounds. The results pave the way toward a new tool for molecular materials able to give access to valuable information on the local orientation of the magnetic moments or to better understand the role of 4p orbitals involved in their magnetic properties.

3.
Inorg Chem ; 61(16): 6326-6336, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35414167

ABSTRACT

Two series of Prussian blue analogs (PBA) were used as model compounds in order to disentangle the information contained in X-ray magnetic circular dichroism (XMCD) at the K-edges of transition metals. The number of 3d electrons on one site of the bimetallic cyanide polymer has been varied by associating to the [Fe(CN)6]3- or the [Cr(CN)6]3- precursors various divalent metal ions A2+ (Mn2+, Fe2+, Co2+, Ni2+, and Cu2+). The compounds were studied by X-ray diffraction and SQUID magnetometry, as well as by X-ray absorption spectroscopy and XMCD at the K-edges of the A2+ transition metal ion. The study shows that the 1s → 4p contribution to the A K-edge XMCD signal can be related to the electronic structure and the magnetic behavior of the probed A2+ ion: the shape of the signal to the filling of the 3d orbitals, the sign of the signal to the direction of the magnetic moment with respect to the applied magnetic field, the intensity of the signal to the total spin number SA, and the area under curve to the Curie constant CA. The whole study hence demonstrates that PBAs are particularly well-adapted for understanding the information contained in the transition metals K-edge XMCD signals. It also offers new perspectives toward the full disentangling of the information contained in these signals and access to new insights into materials magnetic properties.

4.
J Synchrotron Radiat ; 28(Pt 4): 1127-1136, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34212876

ABSTRACT

In order to disentangle the physical effects at the origin of transition metal K-edge X-ray magnetic circular dichroism (XMCD) in coordination polymers and quantify small structural distortions from the intensity of these signals, a systematic investigation of Prussian blue analogs as model compounds is being conducted. Here the effects of the temperature and of the external magnetic field are tackled; none of these external parameters modify the shape of the XMCD signal but they both critically modify its intensity. The optimized experimental conditions, as well as a reliable and robust normalization procedure, could thus be determined for the study of the intrinsic parameters. Through an extended discussion on measurements on other XMCD-dedicated beamlines and for other coordination compounds, we finally provide new transition metal K-edge XMCD users with useful information to initiate and successfully carry out their projects.


Subject(s)
Circular Dichroism/methods , Ferrocyanides/chemistry , Polymers/chemistry , Magnetic Fields , Temperature , X-Rays
5.
J Am Chem Soc ; 140(32): 10332-10343, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30036473

ABSTRACT

We report on a comparative study of 5.5 nm (embedded in an ordered mesoporous silica matrix) and 100 nm (free) (photo)magnetic CoFe Prussian blue analogue (PBA) particles. Co and Fe K-edge X-ray absorption spectroscopy, X-ray diffraction, infrared spectroscopy, and magnetic measurements point out a core-shell structure of the particles in their ground states. In the 5.5 nm particles, the 11.5 Šthick shell is made of Fe(CN)6 entities and CoII-NC-FeIII linkages departing from the geometry usually encountered in PBA, whatever the oxidation state (CoIIFeIII or CoIIIFeII) of the CoFe pairs in the core. In the photomagnetic particles, the photomagnetic effect in the core of the particles is due to the same photoinduced CoIII(LS)FeII → CoII(HS)FeIII electron transfer whatever the size of the particles. The shell of the nanoparticles exhibits a peculiar photoinduced structural rearrangement, and the nanoparticles in their photoexcited state exhibit a superparamagnetic behavior.

6.
Inorg Chem ; 57(13): 7610-7619, 2018 Jul 02.
Article in English | MEDLINE | ID: mdl-29897743

ABSTRACT

CoFe Prussian blue analogues (PBAs) are well-known for their magnetic bistability tuned by external stimuli. The photoswitching properties are due to the electron transfer from CoLSIII-NC-FeLSII to CoHSII-NC-FeLSIII linkage, accompanied by the spin change of the Co ions (HS stands for high spin and LS for low spin). In this work, we investigated 100 nm particles of the Rb2Co4[Fe(CN)6]3.3·11H2O PBA (named RbCoFe). The photoexcited state of the PBA was reached by red laser excitation (λ = 635 nm) and observed by X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) that are element-specific probes. The XMCD measurements at the Co and Fe L2,3 edges, probing the magnetic 3d orbitals, have provided a direct evidence of the antiferromagnetic interaction between the CoHSII and the FeLSIII ions belonging to the core of the particles, thus confirming the previously published, though indirect XMCD measurements at K edges. Because of the surface sensitivity of XMCD at the L2,3 edges, the magnetic properties of the particle surface were also revealed. Surface CoHSII-FeLSIII pairs exhibit a weak ferromagnetic interaction. Thus, the magnetic structure of the photomagnetic RbCoFe 100 nm particles can be described as a ferrimagnetic core surrounded by a ferromagnetic shell. This finding brings new insights into the understanding of the complex magnetic properties of photoexcited RbCoFe and shows that the surface can have different magnetic behavior than the core. This should impact the nature of magnetic coupling in nanoparticles of CoFe PBA, where surface effect will dominate.

7.
J Chem Phys ; 146(13): 134102, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28390363

ABSTRACT

Vibrational spectroscopy is a fundamental tool to investigate local atomic arrangements and the effect of the environment, provided that the spectral features can be correctly assigned. This can be challenging in experiments and simulations when double peaks are present because they can have different origins. Fermi dyads are a common class of such doublets, stemming from the resonance of the fundamental excitation of a mode with the overtone of another. We present a new, efficient approach to unambiguously characterize Fermi resonances in density functional theory (DFT) based simulations of condensed phase systems. With it, the spectral features can be assigned and the two resonating modes identified. We also show how data from DFT simulations employing classical nuclear dynamics can be post-processed and combined with a perturbative quantum treatment at a finite temperature to include analytically thermal quantum nuclear effects. The inclusion of these effects is crucial to correct some of the qualitative failures of the Newtonian dynamics simulations at a low temperature such as, in particular, the behavior of the frequency splitting of the Fermi dyad. We show, by comparing with experimental data for the paradigmatic case of supercritical CO2, that these thermal quantum effects can be substantial even at ambient conditions and that our scheme provides an accurate and computationally convenient approach to account for them.

8.
Phys Chem Chem Phys ; 19(8): 6246-6256, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28195284

ABSTRACT

A combined experimental-theoretical study on the temperature dependence of the X-ray absorption near-edge structure (XANES) and nuclear magnetic resonance (NMR) spectra of periclase (MgO), spinel (MgAl2O4), corundum (α-Al2O3), berlinite (α-AlPO4), stishovite and α-quartz (SiO2) is reported. Predictive calculations are presented when experimental data are not available. For these light-element oxides, both experimental techniques detect systematic effects related to quantum thermal vibrations which are well reproduced by density-functional theory simulations. In calculations, thermal fluctuations of the nuclei are included by considering nonequilibrium configurations according to finite-temperature quantum statistics at the quasiharmonic level. The influence of nuclear quantum fluctuations on XANES and NMR spectroscopies is particularly sensitive to the coordination number of the probed cation. Furthermore, the relative importance of nuclear dynamics and thermal expansion is quantified over a large range of temperatures.

9.
J Phys Chem B ; 120(6): 1158-68, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26783685

ABSTRACT

In liquid phase chemistry dynamic solute-solvent interactions often govern the path, ultimate outcome, and efficiency of chemical reactions. These steps involve many-body movements on subpicosecond time scales and thus ultrafast structural tools capable of capturing both intramolecular electronic and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3](2+), with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering patterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited solute. By simultaneous combination of both methods only, we can extract new information about the solvation dynamic processes unfolding during the first picosecond (ps). The measured bulk solvent density increase of 0.2% indicates a dramatic change of the solvation shell around each photoexcited solute, confirming previous ab initio molecular dynamics simulations. Structural changes in the aqueous solvent associated with density and temperature changes occur with ∼1 ps time constants, characteristic for structural dynamics in water. This slower time scale of the solvent response allows us to directly observe the structure of the excited solute molecules well before the solvent contributions become dominant.

10.
Phys Chem Chem Phys ; 17(26): 17260-5, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26073970

ABSTRACT

We present herein the first in situ site-selective XAS experiment performed on a proof-of-principle transformation of a mixed-valence compound: the calcination of the K0.1Co(II)4[Co(III)(CN)6]2.7·20H2O Prussian Blue analogue (containing Co(2+) and Co(3+) ions in two different Oh sites) into Co3O4 (containing Co(2+) ions in a Td site and Co(3+) in an Oh site). By recording the Co K-edge X-ray absorption spectra using a spectrometer aligned at the Co Kß1,3 emission line, the evolution of each species was singly monitored from 20 °C up to the oxide formation. The experimental spectrum of the Co(2+)(Td) and Co(3+) (Oh) species in Co3O4 is reported for the first time. Our results demonstrate the possibilities offered by site-selective XAS for the investigation of chemical transformations and the study of materials under working conditions whenever the chemical element of interest is present in several states and/or sites.

11.
J Phys Chem C Nanomater Interfaces ; 119(11): 5888-5902, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25838847

ABSTRACT

Theoretical predictions show that depending on the populations of the Fe 3d xy , 3d xz , and 3d yz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy)2]2+. The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy)2]2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy)2]2+ molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe-ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)-high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations.

12.
Nat Commun ; 6: 6359, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25727920

ABSTRACT

Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor-acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.

13.
Phys Chem Chem Phys ; 15(26): 11088-98, 2013 Jul 14.
Article in English | MEDLINE | ID: mdl-23719632

ABSTRACT

The sensitivity of the 1s X-ray emission and high-energy-resolution fluorescence-detected X-ray absorption spectroscopies (XES and HERFD-XAS) to resolve the variations in the chemical state (electronic structure and local coordination) of Br has been investigated for a selected set of compounds including NaBrO3, NH4Br and C2H4Br2 (1,2-dibromoethane). For the Br K-edge XAS, employing the HERFD mode significantly increases the energy resolution, which demonstrates that with a crystal spectrometer used as a detector the absorption technique becomes a more powerful analytical tool. In the case of XES, the experimental results as well as the density functional theory (DFT) modeling both show that the chemical sensitivity of the main 1s diagram emission lines (Kα1,2 and Kß1,3) is rather limited. However, the valence-to-core (Kß2) region of XES displays significant shape and intensity variations, as expected for transitions having the same final states as those of photoemission spectroscopy. The spectra are in good agreement with the molecular orbital description delivered by DFT calculations. Calculations for an extended series of Br compounds confirm that valence-to-core XES can serve as a probe for chemical analysis, and, being a hard X-ray photon-in/photon-out technique, it is particularly well-suited for in situ investigations of molecular transformations, even on the ultrafast time scales down to femtosecond time resolution.


Subject(s)
Bromine/chemistry , Bromates/chemistry , Bromides/chemistry , Ethylene Dibromide/chemistry , Models, Molecular , Quaternary Ammonium Compounds/chemistry , Sodium Compounds/chemistry , Spectrometry, X-Ray Emission
14.
J Phys Chem Lett ; 4(11): 1972-6, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-26283136

ABSTRACT

Building a detailed understanding of the structure-function relationship is a crucial step in the optimization of molecular photocatalysts employed in water splitting schemes. The optically dark nature of their active sites usually prevents a complete mapping of the photoinduced dynamics. In this work, transient X-ray absorption spectroscopy highlights the electronic and geometric changes that affect such a center in a bimetallic model complex. Upon selective excitation of the ruthenium chromophore, the cobalt moiety is reduced through intramolecular electron transfer and undergoes a spin flip accompanied by an average bond elongation of 0.20 ± 0.03 Å. The analysis is supported by simulations based on density functional theory structures (B3LYP*/TZVP) and FEFF 9.0 multiple scattering calculations. More generally, these results exemplify the large potential of the technique for tracking elusive intermediates that impart unique functionalities in photochemical devices.

15.
J Phys Condens Matter ; 24(22): 225401, 2012 Jun 06.
Article in English | MEDLINE | ID: mdl-22551549

ABSTRACT

X-ray absorption spectroscopy measurements at the Cr K-edge of a trichroic crystal of alexandrite BeAl(2)O(4):Cr(3+) for different orientations of the crystal with respect to the polarization and direction of the x-ray incident beam have been performed. Analysis of the experimental spectra with the help of first-principles calculations of x-ray absorption spectra allowed us to estimate the proportion of chromium Cr(3+) cations among the two different octahedral sites of the alexandrite structure (70% in the C(s) site-30% in the C(i) site). The methodology presented in this work opens up new possibilities in the field of mineralogy for the study of complex minerals containing several sites potentially occupied by several transition elements or for solid solutions.

16.
Phys Chem Chem Phys ; 12(21): 5619-33, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20431827

ABSTRACT

We first present an extended introduction of the various methods used to extract electronic and structural information from the K pre-edge X-ray absorption spectra of 3d transition metal ions. The K pre-edge structure is then modelled for a selection of 3d transition metal compounds and analyzed using first-principles calculations based on the density functional theory (DFT) in the local density approximation (LDA). The selected compounds under study are presented in an ascending order of electronic structure complexity, starting with the Ti K-edge of rutile and anatase, and finishing with the Fe K-edge of the cyanomet-myoglobin. In most cases, the calculations are compared to polarized experimental spectra. It is shown that DFT-LDA methods enable us to reproduce satisfactorily the experimental features and to understand the nature of the electronic transitions involved in the pre-edge region. The limiting aspects of such methods in modelling the core-hole electron interaction and the 3d electron-electron repulsion are also pointed out.


Subject(s)
Electrons , Transition Elements/chemistry , X-Ray Absorption Spectroscopy , Crystallography, X-Ray , Ferrous Compounds/chemistry , Myoglobin/chemistry , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL