Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Q Rev Biophys ; 57: e5, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38351868

ABSTRACT

Cell segregation caused by collective cell migration (CCM) is crucial for morphogenesis, functional development of tissue parts, and is an important aspect in other diseases such as cancer and its metastasis process. Efficiency of the cell segregation depends on the interplay between: (1) biochemical processes such as cell signaling and gene expression and (2) physical interactions between cells. Despite extensive research devoted to study the segregation of various co-cultured systems, we still do not understand the role of physical interactions in cell segregation. Cumulative effects of these physical interactions appear in the form of physical parameters such as: (1) tissue surface tension, (2) viscoelasticity caused by CCM, and (3) solid stress accumulated in multicellular systems. These parameters primarily depend on the interplay between the state of cell-cell adhesion contacts and cell contractility. The role of these physical parameters on the segregation efficiency is discussed on model systems such as co-cultured breast cell spheroids consisting of two subpopulations that are in contact. This review study aims to: (1) summarize biological aspects related to cell segregation, mechanical properties of cell collectives, effects along the biointerface between cell subpopulations and (2) describe from a biophysical/mathematical perspective the same biological aspects summarized before. So that overall it can illustrate the complexity of the biological systems that translate into very complex biophysical/mathematical equations. Moreover, by presenting in parallel these two seemingly different parts (biology vs. equations), this review aims to emphasize the need for experiments to estimate the variety of parameters entering the resulting complex biophysical/mathematical models.


Subject(s)
Models, Theoretical , Neoplasms , Humans , Cell Movement , Morphogenesis , Biophysical Phenomena
2.
Clin Biomech (Bristol, Avon) ; 111: 106153, 2024 01.
Article in English | MEDLINE | ID: mdl-38061204

ABSTRACT

BACKGROUND: Breast-conserving surgery is the most acceptable operation for breast cancer removal from an invasive and psychological point of view. Before the surgical procedure, a preoperative MRI is performed in the prone configuration, while the surgery is achieved in the supine position. This leads to a considerable movement of the breast, including the tumor, between the two poses, complicating the surgeon's task. METHODS: In this work, a simulation pipeline allowing the computation of patient-specific geometry and the prediction of personalized breast material properties was put forward. Through image segmentation, a finite element model including the subject-specific geometry is established. By first computing an undeformed state of the breast, the geometrico-material model is calibrated by surface acquisition in the intra-operative stance. FINDINGS: Using an elastic corotational formulation, the patient-specific mechanical properties of the breast and skin were identified to obtain the best estimates of the supine configuration. The final results are a shape-fitting closest point residual of 4.00 mm for the mechanical parameters Ebreast=0.32 kPa and Eskin=22.72 kPa, congruent with the current state-of-the-art. The Covariance Matrix Adaptation Evolution Strategy optimizer converges on average between 5 to 30 min depending on the initial parameters, reaching a simulation speed of 20 s. To our knowledge, our model offers one of the best compromises between accuracy and speed. INTERPRETATION: Satisfactory results were obtained for the estimation of breast deformation from preoperative to intra-operative configuration. Furthermore, we have demonstrated the clinical feasibility of such applications using a simulation framework that aims at the smallest disturbance of the actual surgical pipeline.


Subject(s)
Breast Neoplasms , Breast , Humans , Female , Breast/diagnostic imaging , Breast/surgery , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Computer Simulation , Magnetic Resonance Imaging/methods , Finite Element Analysis
3.
Econ Hum Biol ; 52: 101331, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38035653

ABSTRACT

With ageing populations, understanding life course factors that raise the risk of depression in old age may help anticipate needs and reduce healthcare costs in the long run. We estimate the risk of depression in old age by combining adult life course trajectories and childhood conditions in supervised machine learning algorithms. Using data from the Survey of Health, Ageing and Retirement in Europe (SHARE), we implement and compare the performance of six alternative machine learning algorithms. We analyse the performance of the algorithms using different life-course data configurations. While we obtain similar predictive abilities between algorithms, we achieve the highest predictive performance when employing semi-structured representations of life courses using sequence data. We use the Shapley Additive Explanations method to extract the most decisive predictive patterns. Age, health, childhood conditions, and low education predict most depression risk later in life, but we identify new predictive patterns in indicators of life course instability and low utilization of dental care services.


Subject(s)
Depression , Life Change Events , Adult , Humans , Child , Depression/epidemiology , Aging , Retirement , Algorithms , Machine Learning
4.
PLoS Comput Biol ; 19(9): e1011464, 2023 09.
Article in English | MEDLINE | ID: mdl-37729344

ABSTRACT

Astrocytes with their specialised morphology are essential for brain homeostasis as metabolic mediators between blood vessels and neurons. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes adopt reactive profiles with molecular and morphological changes that could lead to the impairment of their metabolic support and impact disease progression. However, the underlying mechanisms of how the metabolic function of human astrocytes is impaired by their morphological changes in AD are still elusive. To address this challenge, we developed and applied a metabolic multiscale modelling approach integrating the dynamics of metabolic energy pathways and physiological astrocyte morphologies acquired in human AD and age-matched control brain samples. The results demonstrate that the complex cell shape and intracellular organisation of energetic pathways determine the metabolic profile and support capacity of astrocytes in health and AD conditions. Thus, our mechanistic approach indicates the importance of spatial orchestration in metabolism and allows for the identification of protective mechanisms against disease-associated metabolic impairments.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Astrocytes/metabolism , Brain/metabolism , Energy Metabolism
5.
J Mech Behav Biomed Mater ; 143: 105902, 2023 07.
Article in English | MEDLINE | ID: mdl-37209595

ABSTRACT

Soft biological tissues demonstrate strong time-dependent and strain-rate mechanical behavior, arising from their intrinsic visco-elasticity and fluid-solid interactions. The time-dependent mechanical properties of soft tissues influence their physiological functions and are related to several pathological processes. Poro-elastic modeling represents a promising approach because it allows the integration of multiscale/multiphysics data to probe biologically relevant phenomena at a smaller scale and embeds the relevant mechanisms at the larger scale. The implementation of multiphase flow poro-elastic models however is a complex undertaking, requiring extensive knowledge. The open-source software FEniCSx Project provides a novel tool for the automated solution of partial differential equations by the finite element method. This paper aims to provide the required tools to model the mixed formulation of poro-elasticity, from the theory to the implementation, within FEniCSx. Several benchmark cases are studied. A column under confined compression conditions is compared to the Terzaghi analytical solution, using the L2-norm. An implementation of poro-hyper-elasticity is proposed. A bi-compartment column is compared to previously published results (Cast3m implementation). For all cases, accurate results are obtained in terms of a normalized Root Mean Square Error (RMSE). Furthermore, the FEniCSx computation is found three times faster than the legacy FEniCS one. The benefits of parallel computation are also highlighted.


Subject(s)
Models, Biological , Finite Element Analysis , Viscosity , Elasticity , Biomechanical Phenomena , Stress, Mechanical
6.
Adv Colloid Interface Sci ; 315: 102902, 2023 May.
Article in English | MEDLINE | ID: mdl-37086625

ABSTRACT

Tissue surface tension is one of the key parameters that govern tissue rearrangement, shaping, and segregation within various compartments during organogenesis, wound healing, and cancer diseases. Deeper insight into the relationship between tissue surface tension and cell residual stress accumulation caused by collective cell migration can help us to understand the multi-scale nature of cell rearrangement with pronounced oscillatory trend. Oscillatory change of cell velocity that caused strain and generated cell residual stress were discussed in the context of mechanical waves. The tissue surface tension also showed oscillatory behaviour. The main goal of this theoretical consideration is to emphasize an inter-relation between various scenarios of cell rearrangement and tissue surface tension by distinguishing liquid-like and solid-like surfaces. This complex phenomenon is discussed in the context of an artificial tissue model system, namely cell aggregate rounding after uni-axial compression between parallel plates. Experimentally obtained oscillatory changes in the cell aggregate shape during the aggregate rounding, which is accompanied by oscillatory decrease in the aggregate surface area, points to oscillatory changes in the tissue surface tension. Besides long-time oscillations, cell surface tension can perform short time relaxation cycles. This behaviour of the tissue surface tension distinguishes living matter from other soft matter systems. This complex phenomenon is discussed based on dilatational viscoelasticity and thermodynamic approach.


Subject(s)
Surface Tension , Cell Movement , Cell Membrane , Thermodynamics , Pressure
7.
Semin Cell Dev Biol ; 147: 47-57, 2023 09 30.
Article in English | MEDLINE | ID: mdl-36631334

ABSTRACT

Epithelial cancer is the one of most lethal cancer type worldwide. Targeting the early stage of disease would allow dramatic improvements in the survival of cancer patients. The early stage of the disease is related to cancer cell spreading across surrounding healthy epithelium. Consequently, deeper insight into cell dynamics along the biointerface between epithelial and cancer (mesenchymal) cells is necessary in order to control the disease as soon as possible. Cell dynamics along this epithelial-cancer biointerface is the result of the interplay between various biological and physical mechanisms. Despite extensive research devoted to study cancer cell spreading across the epithelium, we still do not understand the physical mechanisms which influences the dynamics along the biointerface. These physical mechanisms are related to the interplay between physical parameters such as: (1) interfacial tension between cancer and epithelial subpopulations, (2) established interfacial tension gradients, (3) the bending rigidity of the biointerface and its impact on the interfacial tension, (4) surface tension of the subpopulations, (5) viscoelasticity caused by collective cell migration, and (6) cell residual stress accumulation. The main goal of this study is to review some of these physical parameters in the context of the epithelial/cancer biointerface elaborated on the model system such as the biointerface between breast epithelial MCF-10A cells and cancer MDA-MB-231 cells and then to incorporate these parameters into a new biophysical model that could describe the dynamics of the biointerface. We conclude by discussing three biophysical scenarios for cell dynamics along the biointerface, which can occur depending on the magnitude of the generated shear stress: a smooth biointerface, a slightly-perturbed biointerface and an intensively-perturbed biointerface in the context of the Kelvin-Helmholtz instability. These scenarios are related to the probability of cancer invasion.


Subject(s)
Breast Neoplasms , Neoplasms , Humans , Female , Epithelium , Epithelial Cells , Cell Movement , Epithelial-Mesenchymal Transition
8.
Semin Cell Dev Biol ; 147: 34-46, 2023 09 30.
Article in English | MEDLINE | ID: mdl-36307358

ABSTRACT

Cancer invasion through the surrounding epithelium and extracellular matrix (ECM) is the one of the main characteristics of cancer progression. While significant effort has been made to predict cancer cells response under various drug therapies, much less attention has been paid to understand the physical interactions between cancer cells and their microenvironment, which are essential for cancer invasion. Considering these physical interactions on various co-cultured in vitro model systems by emphasizing the role of viscoelasticity, the tissue surface tension, solid stress, and their inter-relations is a prerequisite for establishing the main factors that influence cancer cell spread and develop an efficient strategy to suppress it. This review focuses on the role of viscoelasticity caused by collective cell migration (CCM) in the context of mono-cultured and co-cultured cancer systems, and on the modeling approaches aimed at reproducing and understanding these biological systems. In this context, we do not only review previously-published biophysics models for collective cell migration, but also propose new extensions of those models to include solid stress accumulated within the spheroid core region and cell residual stress accumulation caused by CCM.


Subject(s)
Cell Communication , Neoplasms , Humans , Cell Movement , Neoplasms/metabolism , Extracellular Matrix/metabolism , Tumor Microenvironment
9.
Sci Adv ; 8(42): eabk1942, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36260666

ABSTRACT

Machine learning (ML) methodology used in the social and health sciences needs to fit the intended research purposes of description, prediction, or causal inference. This paper provides a comprehensive, systematic meta-mapping of research questions in the social and health sciences to appropriate ML approaches by incorporating the necessary requirements to statistical analysis in these disciplines. We map the established classification into description, prediction, counterfactual prediction, and causal structural learning to common research goals, such as estimating prevalence of adverse social or health outcomes, predicting the risk of an event, and identifying risk factors or causes of adverse outcomes, and explain common ML performance metrics. Such mapping may help to fully exploit the benefits of ML while considering domain-specific aspects relevant to the social and health sciences and hopefully contribute to the acceleration of the uptake of ML applications to advance both basic and applied social and health sciences research.

10.
Phys Rev Lett ; 128(10): 106101, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35333088

ABSTRACT

Understanding complex materials at different length scales requires reliably accounting for van der Waals (vdW) interactions, which stem from long-range electronic correlations. While the important role of many-body vdW interactions has been extensively documented for the stability of materials, much less is known about the coupling between vdW interactions and atomic forces. Here we analyze the Hessian force response matrix for a single and two vdW-coupled atomic chains to show that a many-body description of vdW interactions yields atomic force response magnitudes that exceed the expected pairwise decay by 3-5 orders of magnitude for a wide range of separations between perturbed and observed atoms. Similar findings are confirmed for carbon nanotubes, graphene, and delamination of graphene from a silicon substrate previously studied experimentally. This colossal force enhancement suggests implications for phonon spectra, free energies, interfacial adhesion, and collective dynamics in materials with many interacting atoms.

11.
J Mech Behav Biomed Mater ; 126: 104952, 2022 02.
Article in English | MEDLINE | ID: mdl-34906865

ABSTRACT

This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot's consolidation theory, we tackle time-dependent uniaxial loading, confined and unconfined, with various geometries and loading rates from 1µm/s to 100µm/s. The cortex tissue is modeled as the porous solid saturated by two immiscible fluids, with dynamic viscosities separated by four orders, resulting in two different characteristic times. These are respectively associated to interstitial fluid and glial cells. The partial differential equations system is discretized in space by the finite element method and in time by Euler-implicit scheme. The solution is computed using a monolithic scheme within the open-source computational framework FEniCS. The parameters calibration is based on Sobol sensitivity analysis, which divides them into two groups: the tissue specific group, whose parameters represent general properties, and sample specific group, whose parameters have greater variations. Our results show that the experimental curves can be reproduced without the need to resort to viscous solid effects, by adding an additional fluid phase. Through this process, we aim to present multiphase poromechanics as a promising way to a unified brain tissue modeling framework in a variety of settings.


Subject(s)
Extracellular Fluid , Elasticity , Finite Element Analysis , Porosity , Viscosity
12.
J Biomech ; 128: 110645, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34500364

ABSTRACT

In breast surgical practice, drawing is part of the preoperative planning procedure and is essential for a successful operation. In this study, we design a pipeline to assist surgeons with patient-specific breast surgical drawings. We use a deformable torso model containing the surgical patterns to match any breast surface scan. To be compatible with surgical timing, we build an articulated model through a skinning process coupled with shape deformers to enhance a fast registration process. On one hand, the scalable bones of the skinning account for pose and morphological variations of the patients. On the other hand, pre-designed artistic blendshapes create a linear space for guaranteeing anatomical variations. Then, we apply meaningful constraints to the model to find a trade-off between precision and speed. The experiments were conducted on 7 patients, in 2 different poses (prone and supine) with a breast size ranging from 36A and 42C (US/UK bra sizing). The acquisitions were obtained using the depth camera Structure Sensor, and the breast scans were acquired in less than 1 minute. The result is a registration method converging within a few seconds (3 maximum), reaching a Mean Absolute Error of 2.3 mm for mesh registration and 8.0 mm for breast anatomical landmarks. Compared to the existing literature, our model can be personalized and does not require any database. Finally, our registered model can be used to transfer surgical reference patterns onto any patient in any position.


Subject(s)
Breast , Torso , Breast/diagnostic imaging , Breast/surgery , Humans
13.
PLoS One ; 16(7): e0254512, 2021.
Article in English | MEDLINE | ID: mdl-34252146

ABSTRACT

Spheroids encapsulated within alginate capsules are emerging as suitable in vitro tools to investigate the impact of mechanical forces on tumor growth since the internal tumor pressure can be retrieved from the deformation of the capsule. Here we focus on the particular case of Cellular Capsule Technology (CCT). We show in this contribution that a modeling approach accounting for the triphasic nature of the spheroid (extracellular matrix, tumor cells and interstitial fluid) offers a new perspective of analysis revealing that the pressure retrieved experimentally cannot be interpreted as a direct picture of the pressure sustained by the tumor cells and, as such, cannot therefore be used to quantify the critical pressure which induces stress-induced phenotype switch in tumor cells. The proposed multiphase reactive poro-mechanical model was cross-validated. Parameter sensitivity analyses on the digital twin revealed that the main parameters determining the encapsulated growth configuration are different from those driving growth in free condition, confirming that radically different phenomena are at play. Results reported in this contribution support the idea that multiphase reactive poro-mechanics is an exceptional theoretical framework to attain an in-depth understanding of CCT experiments, to confirm their hypotheses and to further improve their design.


Subject(s)
Extracellular Matrix/chemistry , Neoplasms/pathology , Alginates/chemistry , Animals , Extracellular Fluid/chemistry , Humans , Mechanical Phenomena , Neoplasms/metabolism , Porosity , Spheroids, Cellular/cytology
14.
Ann Biomed Eng ; 49(9): 2421-2429, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34075449

ABSTRACT

The knee meniscus is a highly porous structure which exhibits a grading architecture through the depth of the tissue. The superficial layers on both femoral and tibial sides are constituted by a fine mesh of randomly distributed collagen fibers while the internal layer is constituted by a network of collagen channels of a mean size of 22.14 [Formula: see text]m aligned at a [Formula: see text] inclination with respect to the vertical. Horizontal dog-bone samples extracted from different depths of the tissue were mechanically tested in uniaxial tension to examine the variation of elastic and viscoelastic properties across the meniscus. The tests show that a random alignment of the collagen fibers in the superficial layers leads to stiffer mechanical responses (E = 105 and 189 MPa) in comparison to the internal regions (E = 34 MPa). All regions exhibit two modes of relaxation at a constant strain ([Formula: see text] to 7.7 s, [Formula: see text] = 49.9 to 59.7 s).


Subject(s)
Menisci, Tibial/physiology , Animals , Biomechanical Phenomena , Collagen , Dogs , Elasticity , Stress, Mechanical , Swine , Viscosity
15.
Ann Biomed Eng ; 49(9): 2273-2281, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33829363

ABSTRACT

The meniscus is an integral part of the human knee, preventing joint degradation by distributing load from the femoral condyles to the tibial plateau. Recent qualitative studies suggested that the meniscus is constituted by an intricate net of collagen channels inside which the fluid flows during loading. The aim of this study is to describe in detail the structure in which this fluid flows by quantifying the orientation and morphology of the collagen channels of the meniscal tissue. A 7 mm cylindrical sample, extracted vertically from the central part of a lateral porcine meniscus was freeze-dried and scanned using the highest-to-date resolution Microscopic Computed Tomography. The orientation of the collagen channels, their size and distribution was calculated. Comparisons with confocal multi-photon microscopy imaging performed on portions of fresh tissue have shown that the freeze-dried procedure adopted here ensures that the native architecture of the tissue is maintained. Sections of the probe at different heights were examined to determine differences in composition and structure along the sample from the superficial to the internal layers. Results reveal a different arrangement of the collagen channels in the superficial layers with respect to the internal layers with the internal layers showing a more ordered structure of the channels oriented at 30[Formula: see text] with respect to the vertical, a porosity of 66.28% and the mean size of the channels of 22.14 [Formula: see text].


Subject(s)
Collagen , Menisci, Tibial/diagnostic imaging , Animals , Swine , X-Ray Microtomography
16.
Nat Commun ; 11(1): 1651, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32245965

ABSTRACT

Anomalous proximity effects have been observed in adhesive systems ranging from proteins, bacteria, and gecko feet suspended over semiconductor surfaces to interfaces between graphene and different substrate materials. In the latter case, long-range forces are evidenced by measurements of non-vanishing stress that extends up to micrometer separations between graphene and the substrate. State-of-the-art models to describe adhesive properties are unable to explain these experimental observations, instead underestimating the measured stress distance range by 2-3 orders of magnitude. Here, we develop an analytical and numerical variational approach that combines continuum mechanics and elasticity with quantum many-body treatment of van der Waals dispersion interactions. A full relaxation of the coupled adsorbate/substrate geometry leads us to conclude that wavelike atomic deformation is largely responsible for the observed long-range proximity effect. The correct description of this seemingly general phenomenon for thin deformable membranes requires a direct coupling between quantum and continuum mechanics.

17.
Robot Surg ; 7: 1-23, 2020.
Article in English | MEDLINE | ID: mdl-32258180

ABSTRACT

This paper surveys both the clinical applications and main technical innovations related to steered needles, with an emphasis on neurosurgery. Technical innovations generally center on curvilinear robots that can adopt a complex path that circumvents critical structures and eloquent brain tissue. These advances include several needle-steering approaches, which consist of tip-based, lengthwise, base motion-driven, and tissue-centered steering strategies. This paper also describes foundational mathematical models for steering, where potential fields, nonholonomic bicycle-like models, spring models, and stochastic approaches are cited. In addition, practical path planning systems are also addressed, where we cite uncertainty modeling in path planning, intraoperative soft tissue shift estimation through imaging scans acquired during the procedure, and simulation-based prediction. Neurosurgical scenarios tend to emphasize straight needles so far, and span deep-brain stimulation (DBS), stereoelectroencephalography (SEEG), intracerebral drug delivery (IDD), stereotactic brain biopsy (SBB), stereotactic needle aspiration for hematoma, cysts and abscesses, and brachytherapy as well as thermal ablation of brain tumors and seizure-generating regions. We emphasize therapeutic considerations and complications that have been documented in conjunction with these applications.

18.
Comput Mech ; 62(4): 835-852, 2018.
Article in English | MEDLINE | ID: mdl-30220758

ABSTRACT

A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme. The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is demonstrated through a set of numerical case studies of varying complexity.

19.
Int J Numer Method Biomed Eng ; 34(5): e2958, 2018 05.
Article in English | MEDLINE | ID: mdl-29314783

ABSTRACT

An error-controlled mesh refinement procedure for needle insertion simulations is presented. As an example, the procedure is applied for simulations of electrode implantation for deep brain stimulation. We take into account the brain shift phenomena occurring when a craniotomy is performed. We observe that the error in the computation of the displacement and stress fields is localised around the needle tip and the needle shaft during needle insertion simulation. By suitably and adaptively refining the mesh in this region, our approach enables to control, and thus to reduce, the error whilst maintaining a coarser mesh in other parts of the domain. Through academic and practical examples we demonstrate that our adaptive approach, as compared with a uniform coarse mesh, increases the accuracy of the displacement and stress fields around the needle shaft and, while for a given accuracy, saves computational time with respect to a uniform finer mesh. This facilitates real-time simulations. The proposed methodology has direct implications in increasing the accuracy, and controlling the computational expense of the simulation of percutaneous procedures such as biopsy, brachytherapy, regional anaesthesia, or cryotherapy. Moreover, the proposed approach can be helpful in the development of robotic surgeries because the simulation taking place in the control loop of a robot needs to be accurate, and to occur in real time.


Subject(s)
Deep Brain Stimulation/methods , Surgical Mesh , Algorithms , Finite Element Analysis , Humans
20.
IEEE Trans Biomed Eng ; 65(3): 596-607, 2018 03.
Article in English | MEDLINE | ID: mdl-28541192

ABSTRACT

OBJECTIVE: To present the first a posteriori error-driven adaptive finite element approach for real-time simulation, and to demonstrate the method on a needle insertion problem. METHODS: We use corotational elasticity and a frictional needle/tissue interaction model. The problem is solved using finite elements within SOFA.1 For simulating soft tissue deformation, the refinement strategy relies upon a hexahedron-based finite element method, combined with a posteriori error estimation driven local -refinement. RESULTS: We control the local and global error level in the mechanical fields (e.g., displacement or stresses) during the simulation. We show the convergence of the algorithm on academic examples, and demonstrate its practical usability on a percutaneous procedure involving needle insertion in a liver. For the latter case, we compare the force-displacement curves obtained from the proposed adaptive algorithm with that obtained from a uniform refinement approach. CONCLUSIONS: Error control guarantees that a tolerable error level is not exceeded during the simulations. Local mesh refinement accelerates simulations. SIGNIFICANCE: Our work provides a first step to discriminate between discretization error and modeling error by providing a robust quantification of discretization error during simulations.


Subject(s)
Computer Simulation , Surgical Procedures, Operative , Algorithms , Finite Element Analysis , Humans , Liver/diagnostic imaging , Liver/surgery , Needles , Surgical Procedures, Operative/education , Surgical Procedures, Operative/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...