Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Vet Intern Med ; 35(5): 2473-2485, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34331715

ABSTRACT

BACKGROUND: Equine neuroaxonal dystrophy/equine degenerative myeloencephalopathy (eNAD/EDM) is an inherited neurodegenerative disorder associated with a vitamin E deficiency within the first year of life. Vitamin E consists of 8 isoforms metabolized by the CYP4F2 enzyme. No antemortem diagnostic test currently exists for eNAD/EDM. HYPOTHESIS/OBJECTIVES: Based on the association of α-tocopherol deficiency with the development of eNAD/EDM, we hypothesized that the rate of α-tocopherol, but not γ-tocopherol or tocotrienol metabolism, would be increased in eNAD/EDM-affected horses. ANIMALS: Vitamin E metabolism: Proof of concept (POC) study; eNAD/EDM-affected (n = 5) and control (n = 6) horses. Validation study: eNAD/EDM-affected Quarter Horses (QHs; n = 6), cervical vertebral compressive myelopathy affected (n = 6) horses and control (n = 29) horses. CYP4F2 expression and copy number: eNAD/EDM-affected (n = 12) and age- and sex-matched control (n = 11-12) horses. METHODS: The rates of α-tocopherol/tocotrienol and γ-tocopherol/tocotrienol metabolism were assessed in equine serum (POC and validation) and urine (POC only) using liquid chromatography tandem mass spectrometry (LC-MS/MS). Quantitative reverse-transcriptase PCR (qRT-PCR) and droplet digital (dd)-PCR were used to assay expression and genomic copy number of a CYP4F2 equine ortholog. RESULTS: Metabolic rate of α-tocopherol was increased in eNAD/EDM horses (POC,P < .0001; validation, P = .03), with no difference in the metabolic rate of γ-tocopherol. Horses with eNAD/EDM had increased expression of the CYP4F2 equine orthologue (P = .02) but no differences in copy number. CONCLUSIONS AND CLINICAL IMPORTANCE: Increased α-tocopherol metabolism in eNAD/EDM-affected QHs provides novel insight into alterations in vitamin E processing in eNAD/EDM and highlights the need for high-dose supplementation to prevent the clinical phenotype in genetically susceptible horses.


Subject(s)
Horse Diseases , Neuroaxonal Dystrophies , Animals , Chromatography, Liquid/veterinary , Horses , Neuroaxonal Dystrophies/genetics , Neuroaxonal Dystrophies/veterinary , Tandem Mass Spectrometry/veterinary , Vitamin E , alpha-Tocopherol
2.
iScience ; 21: 720-735, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31733517

ABSTRACT

Ninety percent of Americans consume less than the estimated average requirements of dietary vitamin E (vitE). Severe vitE deficiency due to genetic mutations in the tocopherol transfer protein (TTPA) in humans results in ataxia with vitE deficiency (AVED), with proprioceptive deficits and somatosensory degeneration arising from dorsal root ganglia neurons (DRGNs). Single-cell RNA-sequencing of DRGNs was performed in Ttpa-/- mice, an established model of AVED. In stark contrast to expected changes in proprioceptive neurons, Ttpa-/- DRGNs showed marked upregulation of voltage-gated Ca2+ and K+ channels in mechanosensitive, tyrosine-hydroxylase positive (TH+) DRGNs. The ensuing significant conductance changes resulted in reduced excitability in mechanosensitive Ttpa-/- DRGNs. A highly supplemented vitE diet (600 mg dl-α-tocopheryl acetate/kg diet) prevented the cellular and molecular alterations and improved mechanosensation. VitE deficiency profoundly alters the molecular signature and functional properties of mechanosensitive TH+ DRGN, representing an intriguing shift of the prevailing paradigm from proprioception to mechanical sensation.

3.
J Vet Intern Med ; 32(5): 1740-1747, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30133798

ABSTRACT

BACKGROUND: Equine neuroaxonal dystrophy/equine degenerative myeloencephalopathy (eNAD/EDM) is a neurodegenerative disorder affecting genetically predisposed foals maintained on an α-tocopherol (α-TOH) deficient diet. Currently no antemortem diagnostic test for eNAD/EDM is available. HYPOTHESIS: Because α-TOH deficiency is associated with increased lipid peroxidation, it was hypothesized that F2 -isoprostanes (F2 IsoP), F4 -neuroprostanes (F4 NP) and oxysterols derived from free radical oxidation would be increased in the cerebrospinal fluid (CSF) and neural tissue of eNAD/EDM affected horses and could serve as potential biomarkers for disease. ANIMALS: Isoprostane Study A: 14 Quarter horse foals (10 healthy foals and 4 eNAD/EDM affected foals) at 1 and 6 months of age. Isoprostane Study B: 17 eNAD/EDM affected and 10 unaffected horses ≥ 1-4 years of age. Oxysterol study: eNAD/EDM affected (n = 14, serum; n = 11, CSF; n = 10, spinal cord [SC]) and unaffected horses 1-4 years of age (n = 12, serum; n = 10, CSF; n = 7, SC). PROCEDURES: Cerebrospinal fluid [F2 IsoP] and [F4 NP] were assessed using gas chromatography-negative ion chemical ionization mass spectrometry. Serum, CSF, and cervical SC [oxysterols] were quantified using high performance liquid chromatography mass spectrometry. Results were compared with respective α-TOH concentrations. RESULTS: Spinal cord [7-ketocholesterol], [7-hydroxycholesterol], and [7-keto-27-hydrocholesterol] were higher in eNAD/EDM horses whereas [24-ketocholesterol] was lower. No significant difference was found in CSF [F2 IsoP] and [F4 NP], serum [oxysterols] and CSF [oxysterols] between eNAD/EDM affected and unaffected horses. No correlation was found between [F2 IsoP], [F4 NP], or [oxysterols] and respective [α-TOH]. CONCLUSIONS AND CLINICAL IMPORTANCE: In the SC, targeted markers of cholesterol oxidation were significantly increased in horses with eNAD/EDM.


Subject(s)
Horse Diseases/blood , Isoprostanes/blood , Lipid Peroxidation , Neuroaxonal Dystrophies/veterinary , Aging , Animals , Biomarkers , Female , Genetic Predisposition to Disease , Horses , Lipid Metabolism , Lipids/chemistry , Male , Neuroaxonal Dystrophies/blood , Neuroaxonal Dystrophies/genetics
4.
Free Radic Biol Med ; 120: 289-302, 2018 05 20.
Article in English | MEDLINE | ID: mdl-29526809

ABSTRACT

Mice with deficiency in tocopherol (alpha) transfer protein gene develop peripheral tocopherol deficiency and sensory neurodegeneration. Ttpa-/- mice maintained on diets with deficient α-tocopherol (α-TOH) had proprioceptive deficits by six months of age, axonal degeneration and neuronal chromatolysis within the dorsal column of the spinal cord and its projections into the medulla. Transmission electron microscopy revealed degeneration of dorsal column axons. We addressed the potential pathomechanism of α-TOH deficient neurodegeneration by global transcriptome sequencing within the spinal cord and cerebellum. RNA-sequencing of the spinal cord in Ttpa-/- mice revealed upregulation of genes associated with the innate immune response, indicating a molecular signature of microglial activation as a result of tocopherol deficiency. For the first time, low level Ttpa expression was identified in the murine spinal cord. Further, the transcription factor liver X receptor (LXR) was strongly activated by α-TOH deficiency, triggering dysregulation of cholesterol biosynthesis. The aberrant activation of transcription factor LXR suppressed the normal induction of the transcription factor retinoic-related orphan receptor-α (RORA), which is required for neural homeostasis. Thus we find that α-TOH deficiency induces LXR, which may lead to a molecular signature of microglial activation and contribute to sensory neurodegeneration.


Subject(s)
Immunity, Innate/genetics , Liver X Receptors/biosynthesis , Nerve Degeneration , Spinal Cord/metabolism , Vitamin E Deficiency/immunology , Animals , Carrier Proteins/genetics , Cerebellum/metabolism , Female , Male , Mice , Mice, Knockout , Nerve Degeneration/genetics , Nerve Degeneration/immunology , Nerve Degeneration/pathology , Transcriptome , Vitamin E Deficiency/genetics , alpha-Tocopherol
5.
Skelet Muscle ; 8(1): 7, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29510741

ABSTRACT

BACKGROUND: The cause of immune-mediated myositis (IMM), characterized by recurrent, rapid-onset muscle atrophy in Quarter Horses (QH), is unknown. The histopathologic hallmark of IMM is lymphocytic infiltration of myofibers. The purpose of this study was to identify putative functional variants associated with equine IMM. METHODS: A genome-wide association (GWA) study was performed on 36 IMM QHs and 54 breed matched unaffected QHs from the same environment using the Equine SNP50 and SNP70 genotyping arrays. RESULTS: A mixed model analysis identified nine SNPs within a ~ 2.87 Mb region on chr11 that were significantly (Punadjusted < 1.4 × 10- 6) associated with the IMM phenotype. Associated haplotypes within this region encompassed 38 annotated genes, including four myosin genes (MYH1, MYH2, MYH3, and MYH13). Whole genome sequencing of four IMM and four unaffected QHs identified a single segregating nonsynonymous E321G mutation in MYH1 encoding myosin heavy chain 2X. Genotyping of additional 35 IMM and 22 unaffected QHs confirmed an association (P = 2.9 × 10- 5), and the putative mutation was absent in 175 horses from 21 non-QH breeds. Lymphocytic infiltrates occurred in type 2X myofibers and the proportion of 2X fibers was decreased in the presence of inflammation. Protein modeling and contact/stability analysis identified 14 residues affected by the mutation which significantly decreased stability. CONCLUSIONS: We conclude that a mutation in MYH1 is highly associated with susceptibility to the IMM phenotype in QH-related breeds. This is the first report of a mutation in MYH1 and the first link between a skeletal muscle myosin mutation and autoimmune disease.


Subject(s)
Autoimmune Diseases/genetics , Horse Diseases/genetics , Mutation, Missense , Myosin Heavy Chains/genetics , Myositis/genetics , Amino Acid Sequence/genetics , Animals , Autoimmune Diseases/pathology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Haplotypes , Horses , Male , Muscle Fibers, Skeletal/pathology , Myositis/pathology , Pedigree , Sequence Alignment
6.
Free Radic Biol Med ; 101: 261-271, 2016 12.
Article in English | MEDLINE | ID: mdl-27751910

ABSTRACT

Specific spontaneous heritable neurodegenerative diseases have been associated with lower serum and cerebrospinal fluid α-tocopherol (α-TOH) concentrations. Equine neuroaxonal dystrophy (eNAD) has similar histologic lesions to human ataxia with vitamin E deficiency caused by mutations in the α-TOH transfer protein gene (TTPA). Mutations in TTPA are not present with eNAD and the molecular basis remains unknown. Given the neuropathologic phenotypic similarity of the conditions, we assessed the molecular basis of eNAD by global transcriptome sequencing of the cervical spinal cord. Differential gene expression analysis identified 157 significantly (FDR<0.05) dysregulated transcripts within the spinal cord of eNAD-affected horses. Statistical enrichment analysis identified significant downregulation of the ionotropic and metabotropic group III glutamate receptor, synaptic vesicle trafficking and cholesterol biosynthesis pathways. Gene co-expression analysis identified one module of upregulated genes significantly associated with the eNAD phenotype that included the liver X receptor (LXR) targets CYP7A1, APOE, PLTP and ABCA1. Validation of CYP7A1 and APOE dysregulation was performed in an independent biologic group and CYP7A1 was found to be additionally upregulated in the medulla oblongata of eNAD horses. Evidence of LXR activation supports a role for modulation of oxysterol-dependent LXR transcription factor activity by tocopherols. We hypothesize that the protective role of α-TOH in eNAD may reside in its ability to prevent oxysterol accumulation and subsequent activation of the LXR in order to decrease lipid peroxidation associated neurodegeneration.


Subject(s)
Liver X Receptors/genetics , Neuroaxonal Dystrophies/genetics , Transcription, Genetic , Transcriptome , Vitamin E Deficiency/genetics , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Cholesterol 7-alpha-Hydroxylase/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Horses , Liver X Receptors/metabolism , Male , Medulla Oblongata/metabolism , Medulla Oblongata/pathology , Molecular Sequence Annotation , Mutation , Neuroaxonal Dystrophies/metabolism , Neuroaxonal Dystrophies/pathology , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Protein Interaction Mapping , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Ionotropic Glutamate/genetics , Receptors, Ionotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction , Spinal Cord/metabolism , Spinal Cord/pathology , Vitamin E Deficiency/metabolism , Vitamin E Deficiency/pathology
7.
Curr Eye Res ; 41(3): 410-6, 2016.
Article in English | MEDLINE | ID: mdl-25897651

ABSTRACT

PURPOSE: Previously, two cytosolic antioxidant enzymes, Glutathione S-transferase Mu 1 (GSTM1) and Mu 5 (GSTM5), were reduced in retinas with age-related macular degeneration (AMD). This study compared genomic copy number variations (gCNV) of these two antioxidant enzymes in AMD versus controls. METHODS: Genomic copy number (gCN) assays were performed using Taqman Gene Copy Number Assays (Applied Biosystems, Darmstadt, Germany) in technical quadruplicate for both GSTM1 and GSTM5. Peripheral leukocyte RNA levels were compared with controls in technical triplicates. Statistical comparisons were performed in SAS v9.2 (SAS Institute Inc., Cary, NC). RESULTS: A large percentage of patients in both AMD and age-matched control groups had no copies of GSTM1 (0/0). The mean gCN of GSTM1 was 1.40 (range 0-4) and 1.61 (range 0-5) for AMD and control, respectively (p = 0.29). A greater percentage of control patients had > 3 gCNs of GSTM1 compared with AMD, respectively (15.3% versus 3.0%, p = 0.004). The gCN of GSTM5 was 2 in all samples except one control sample. The relative quantification of GSTM1 and GSTM5 mRNA from peripheral blood leukocytes in patients showed significant differences in relative expression in AMD versus control (p < 0.05). Peripheral blood leukocyte mRNA and gCN were not significantly correlated (p = 0.27). CONCLUSION: Since high copy numbers of GSTM1 are found more frequently in controls than in AMD, it is possible that high copy number leads to increased retinal antioxidant defense. Genomic polymorphisms of GSTM1 and GSTM5 do not significantly affect the peripheral blood leukocyte mRNA levels.


Subject(s)
DNA Copy Number Variations , Geographic Atrophy/genetics , Glutathione Transferase/genetics , Wet Macular Degeneration/genetics , Aged , Aged, 80 and over , Case-Control Studies , Female , Fluorescein Angiography , Gene Expression , Geographic Atrophy/diagnosis , Humans , Male , Prospective Studies , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Tomography, Optical Coherence , Wet Macular Degeneration/diagnosis
8.
Mol Vis ; 20: 1569-78, 2014.
Article in English | MEDLINE | ID: mdl-25489229

ABSTRACT

PURPOSE: MicroRNA-34a (miR-34a) has been implicated in neurodegeneration. MiR-34a belongs to a signaling network involving p53 and Sirt-1. This network responds to DNA damage with further downstream signals that induce senescence or apoptosis. Our goal was to measure the expression level of miR-34a in the mouse retina and RPE as a function of age. METHODS: The age-dependent change in miR-34a expression was quantified using a real-time PCR (RT-PCR) assay on microRNA isolates from eye tissue: the retina and RPE/choroid (4, 18, 24, and 32 months of age). Tissue localization of miR-34a was determined by in situ hybridization (ISH) for a series of time points. Expression of the miR-34a target gene Sirt1 was analyzed using RT-PCR and immunohistochemistry. RESULTS: MiR-34a examined with real-time PCR showed a linear increase in expression with age when compared to that of 4-month-old mice. However, the level of expression between the 24 and 32-month-old animals showed mild downregulation. An age-related increase in miR-34a expression was confirmed in the mouse eye using in situ hybridization. An inverse relationship between the levels of expression of miR-34a and its target Sirt1 mRNA was found at 18 and 24 months of age. CONCLUSIONS: Our data showed that miR-34a expression increased in the retina and RPE with age. The level of DNA damage in mitochondria in the retina and RPE followed a similar time course. This suggests that miR-34a may play a role in the senescence and apoptosis of the retina and RPE cells in the aging eye.


Subject(s)
Aging/genetics , Choroid/metabolism , MicroRNAs/genetics , Retinal Pigment Epithelium/metabolism , Animals , Choroid/growth & development , DNA Damage , Gene Expression Regulation, Developmental , Male , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Mitochondria/metabolism , Retinal Pigment Epithelium/growth & development , Sirtuin 1/genetics , Sirtuin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL