Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 41(9): e110466, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35307861

ABSTRACT

Pancreatic ductal adenocarcinoma (PDA) tumor cells are deprived of oxygen and nutrients and therefore must adapt their metabolism to ensure proliferation. In some physiological states, cells rely on ketone bodies to satisfy their metabolic needs, especially during nutrient stress. Here, we show that PDA cells can activate ketone body metabolism and that ß-hydroxybutyrate (ßOHB) is an alternative cell-intrinsic or systemic fuel that can promote PDA growth and progression. PDA cells activate enzymes required for ketogenesis, utilizing various nutrients as carbon sources for ketone body formation. By assessing metabolic gene expression from spontaneously arising PDA tumors in mice, we find HMG-CoA lyase (HMGCL), involved in ketogenesis, to be among the most deregulated metabolic enzymes in PDA compared to normal pancreas. In vitro depletion of HMGCL impedes migration, tumor cell invasiveness, and anchorage-independent tumor sphere compaction. Moreover, disrupting HMGCL drastically decreases PDA tumor growth in vivo, while ßOHB stimulates metastatic dissemination to the liver. These findings suggest that ßOHB increases PDA aggressiveness and identify HMGCL and ketogenesis as metabolic targets for limiting PDA progression.


Subject(s)
Ketone Bodies , Pancreatic Neoplasms , 3-Hydroxybutyric Acid/metabolism , Animals , Ketone Bodies/metabolism , Mice , Oxo-Acid-Lyases , Pancreas/metabolism
2.
Exploration (Beijing) ; 1(1): 21-34, 2021 Aug.
Article in English | MEDLINE | ID: mdl-37366462

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer with no efficacious treatment. The application of nanomedicine is expected to bring new hope to PDAC treatment. In this study, we report a novel supramolecular dendrimeric nanosystem carrying the anticancer drug doxorubicin, which demonstrated potent anticancer activity, markedly overcoming the heterogeneity of drug response and resistance of primary cultured tumor cells derived from PDAC patients. This dendrimer nanodrug was constructed with a fluorinated amphiphilic dendrimer, which self-assembled into micelles nanostructure and encapsulated doxorubicin with high loading. Because of the fine nanosize, stable formulation and acid-promoted drug release, this dendrimeric nanosystem effectively accumulated in tumor, with deep penetration in tumor tissue and rapid drug uptake/release profile in cells, ultimately resulting in potent anticancer activity and complete suppression of tumor growth in patient-derived xenografts. Most importantly, this dendrimer nanodrug generated uniform and effective response when treating 35 primary pancreatic cancer cell lines issued from patient samples as a robust platform for preclinical drug efficacy testing. In addition, this dendrimer nanodrug formulation was devoid of adverse effects and showed excellent tolerability. Given all these uniquely advantageous features, this simple and convenient dendrimer nanodrug holds great promise as a potential candidate to treat the deadly PDAC.

3.
Cell Rep Med ; 1(8): 100143, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33294863

ABSTRACT

Mitochondrial respiration (oxidative phosphorylation, OXPHOS) is an emerging target in currently refractory cancers such as pancreatic ductal adenocarcinoma (PDAC). However, the variability of energetic metabolic adaptations between PDAC patients has not been assessed in functional investigations. In this work, we demonstrate that OXPHOS rates are highly heterogeneous between patient tumors, and that high OXPHOS tumors are enriched in mitochondrial respiratory complex I at protein and mRNA levels. Therefore, we treated PDAC cells with phenformin (complex I inhibitor) in combination with standard chemotherapy (gemcitabine), showing that this treatment is synergistic specifically in high OXPHOS cells. Furthermore, phenformin cooperates with gemcitabine in high OXPHOS tumors in two orthotopic mouse models (xenografts and syngeneic allografts). In conclusion, this work proposes a strategy to identify PDAC patients likely to respond to the targeting of mitochondrial energetic metabolism in combination with chemotherapy, and that phenformin should be clinically tested in appropriate PDAC patient subpopulations.


Subject(s)
Cell Respiration/genetics , Drug Resistance, Neoplasm/genetics , Electron Transport Complex I/genetics , Pancreatic Neoplasms/genetics , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Respiration/drug effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Drug Resistance, Neoplasm/drug effects , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Mitochondria/drug effects , Mitochondria/genetics , Oxidative Phosphorylation/drug effects , PC-3 Cells , Pancreatic Neoplasms/drug therapy , Phenformin/pharmacology , Xenograft Model Antitumor Assays/methods , Gemcitabine , Pancreatic Neoplasms
4.
Nat Commun ; 8: 16031, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28685754

ABSTRACT

Tissue architecture contributes to pancreatic ductal adenocarcinoma (PDAC) phenotypes. Cancer cells within PDAC form gland-like structures embedded in a collagen-rich meshwork where nutrients and oxygen are scarce. Altered metabolism is needed for tumour cells to survive in this environment, but the metabolic modifications that allow PDAC cells to endure these conditions are incompletely understood. Here we demonstrate that collagen serves as a proline reservoir for PDAC cells to use as a nutrient source when other fuels are limited. We show PDAC cells are able to take up collagen fragments, which can promote PDAC cell survival under nutrient limited conditions, and that collagen-derived proline contributes to PDAC cell metabolism. Finally, we show that proline oxidase (PRODH1) is required for PDAC cell proliferation in vitro and in vivo. Collectively, our results indicate that PDAC extracellular matrix represents a nutrient reservoir for tumour cells highlighting the metabolic flexibility of this cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Collagen/metabolism , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/genetics , Proline Oxidase/genetics , Proline/metabolism , Animals , Biological Transport , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Cell Survival , Collagen/chemistry , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Humans , Male , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , Neoplasm Transplantation , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Procollagen-Proline Dioxygenase/genetics , Procollagen-Proline Dioxygenase/metabolism , Proline Oxidase/metabolism , Signal Transduction
5.
Sci Rep ; 7: 45136, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28332584

ABSTRACT

Metabolic reprogramming is a hallmark of cancer development, mediated by genetic and epigenetic alterations that may be pharmacologically targeted. Among oncogenes, the kinase Akt is commonly overexpressed in tumors and favors glycolysis, providing a rationale for using Akt inhibitors. Here, we addressed the question of whether and how inhibiting Akt activity could improve therapy of non-small cell lung cancer (NSCLC) that represents more than 80% of all lung cancer cases. First, we demonstrated that Akt inhibitors interacted synergistically with Microtubule-Targeting Agents (MTAs) and specifically in cancer cell lines, including those resistant to chemotherapy agents and anti-EGFR targeted therapies. In vivo, we further revealed that the chronic administration of low-doses of paclitaxel - i.e. metronomic scheduling - and the anti-Akt perifosine was the most efficient and the best tolerated treatment against NSCLC. Regarding drug mechanism of action, perifosine potentiated the pro-apoptotic effects of paclitaxel, independently of cell cycle arrest, and combining paclitaxel/perifosine resulted in a sustained suppression of glycolytic and mitochondrial metabolism. This study points out that targeting cancer cell bioenergetics may represent a novel therapeutic avenue in NSCLC, and provides a strong foundation for future clinical trials of metronomic MTAs combined with Akt inhibitors.


Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Energy Metabolism/drug effects , Lung Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Cell Culture Techniques , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Disease Models, Animal , Glycolysis , Humans , Kaplan-Meier Estimate , Lung Neoplasms/drug therapy , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Mice , Mitochondria/metabolism , Paclitaxel/pharmacology , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
6.
Proc Natl Acad Sci U S A ; 112(8): 2473-8, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25675507

ABSTRACT

The malignant progression of pancreatic ductal adenocarcinoma (PDAC) is accompanied by a profound desmoplasia, which forces proliferating tumor cells to metabolically adapt to this new microenvironment. We established the PDAC metabolic signature to highlight the main activated tumor metabolic pathways. Comparative transcriptomic analysis identified lipid-related metabolic pathways as being the most highly enriched in PDAC, compared with a normal pancreas. Our study revealed that lipoprotein metabolic processes, in particular cholesterol uptake, are drastically activated in the tumor. This process results in an increase in the amount of cholesterol and an overexpression of the low-density lipoprotein receptor (LDLR) in pancreatic tumor cells. These findings identify LDLR as a novel metabolic target to limit PDAC progression. Here, we demonstrate that shRNA silencing of LDLR, in pancreatic tumor cells, profoundly reduces uptake of cholesterol and alters its distribution, decreases tumor cell proliferation, and limits activation of ERK1/2 survival pathway. Moreover, blocking cholesterol uptake sensitizes cells to chemotherapeutic drugs and potentiates the effect of chemotherapy on PDAC regression. Clinically, high PDAC Ldlr expression is not restricted to a specific tumor stage but is correlated to a higher risk of disease recurrence. This study provides a precise overview of lipid metabolic pathways that are disturbed in PDAC. We also highlight the high dependence of pancreatic cancer cells upon cholesterol uptake, and identify LDLR as a promising metabolic target for combined therapy, to limit PDAC progression and disease patient relapse.


Subject(s)
Adenocarcinoma/drug therapy , Adenocarcinoma/metabolism , Cholesterol/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Animals , Cell Compartmentation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Clone Cells , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing/drug effects , Humans , Lipoproteins/metabolism , MAP Kinase Signaling System/drug effects , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Mice , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Phenotype , Prognosis , Receptors, LDL/genetics , Receptors, LDL/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics , Gemcitabine , Pancreatic Neoplasms
7.
Blood ; 116(7): 1114-23, 2010 Aug 19.
Article in English | MEDLINE | ID: mdl-20484085

ABSTRACT

Compared with adults, pediatric mastocytosis has a relatively favorable prognosis. Interestingly, a difference was also observed in the status of c-kit mutations according to the age of onset. Although most adult patients have a D(816)V mutation in phosphotransferase domain (PTD), we have described that half of the children carry mutations in extracellular domain (ECD). KIT-ECD versus KIT-PTD mutants were introduced into rodent Ba/F3, EML, Rat2, and human TF1 cells to investigate their biologic effect. Both ECD and PTD mutations induced constitutive receptor autophosphorylation and ligand-independent proliferation of the 3 hematopoietic cells. Unlike ECD mutants, PTD mutants enhanced cluster formation and up-regulated several mast cell-related antigens in Ba/F3 cells. PTD mutants failed to support colony formation and erythropoietin-mediated erythroid differentiation. ECD and PTD mutants also displayed distinct whole-genome transcriptional profiles in EML cells. We observed differences in their signaling properties: they both activated STAT, whereas AKT was only activated by ECD mutants. Consistently, AKT inhibitor suppressed ECD mutant-dependent proliferation, clonogenicity, and erythroid differentiation. Expression of myristoylated AKT restored erythroid differentiation in EML-PTD cells, suggesting the differential role of AKT in those mutants. Overall, our study implied different pathogenesis of pediatric versus adult mastocytosis, which might explain their diverse phenotypes.


Subject(s)
Mastocytosis/genetics , Mutation/genetics , Phosphotransferases/genetics , Proto-Oncogene Proteins c-kit/genetics , Adult , Animals , Apoptosis , Blotting, Western , Cells, Cultured , Child , Fibroblasts/cytology , Fibroblasts/metabolism , Flow Cytometry , Humans , Leukemia, Erythroblastic, Acute/metabolism , Leukemia, Erythroblastic, Acute/pathology , Lymphocytes/metabolism , Mast Cells/metabolism , Mastocytosis/metabolism , Mastocytosis/pathology , Mice , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/genetics , Rats , Reverse Transcriptase Polymerase Chain Reaction
8.
PLoS One ; 4(9): e7258, 2009 Sep 30.
Article in English | MEDLINE | ID: mdl-19789626

ABSTRACT

BACKGROUND: The stem cell factor receptor, KIT, is a target for the treatment of cancer, mastocytosis, and inflammatory diseases. Here, we characterise the in vitro and in vivo profiles of masitinib (AB1010), a novel phenylaminothiazole-type tyrosine kinase inhibitor that targets KIT. METHODOLOGY/PRINCIPAL FINDINGS: In vitro, masitinib had greater activity and selectivity against KIT than imatinib, inhibiting recombinant human wild-type KIT with an half inhibitory concentration (IC(50)) of 200+/-40 nM and blocking stem cell factor-induced proliferation and KIT tyrosine phosphorylation with an IC(50) of 150+/-80 nM in Ba/F3 cells expressing human or mouse wild-type KIT. Masitinib also potently inhibited recombinant PDGFR and the intracellular kinase Lyn, and to a lesser extent, fibroblast growth factor receptor 3. In contrast, masitinib demonstrated weak inhibition of ABL and c-Fms and was inactive against a variety of other tyrosine and serine/threonine kinases. This highly selective nature of masitinib suggests that it will exhibit a better safety profile than other tyrosine kinase inhibitors; indeed, masitinib-induced cardiotoxicity or genotoxicity has not been observed in animal studies. Molecular modelling and kinetic analysis suggest a different mode of binding than imatinib, and masitinib more strongly inhibited degranulation, cytokine production, and bone marrow mast cell migration than imatinib. Furthermore, masitinib potently inhibited human and murine KIT with activating mutations in the juxtamembrane domain. In vivo, masitinib blocked tumour growth in mice with subcutaneous grafts of Ba/F3 cells expressing a juxtamembrane KIT mutant. CONCLUSIONS: Masitinib is a potent and selective tyrosine kinase inhibitor targeting KIT that is active, orally bioavailable in vivo, and has low toxicity.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-kit/metabolism , Animals , Benzamides , Bone Marrow Cells/metabolism , Drug Evaluation, Preclinical , Female , Humans , Inhibitory Concentration 50 , Mice , Mice, Nude , Models, Molecular , Mutation , Piperidines , Pyridines , Recombinant Proteins/chemistry , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...