Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrition ; 66: 122-130, 2019 10.
Article in English | MEDLINE | ID: mdl-31265967

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the effects of creatine supplementation on early stages of ethanol-induced hepatic damage. METHODS: Male Swiss mice were divided into three groups (n = 12/group): control (C), ethanol (E), and ethanol supplemented with creatine (EC). The control group received a diet containing 15.8% of total calories from proteins, 46.3% from carbohydrates, and 37.9% from lipids. The ethanol and ethanol and creatine groups received diets containing 15.8% of total calories from proteins, 16.2% from carbohydrates, and 34.5% from lipids; the remaining calories were obtained from the addition of 5% of 95% ethanol. Creatine (1%; weight/vol) was added to the diet of EC mice. After 14 and 28 d, six animals from each group were sacrificed, generating subdivisions in each group: C14 and C28, E14 and E28, EC14 and EC28. After sacrifice, the liver was removed, weighed, and prepared for histologic, biochemical, and molecular analysis, and blood was collected. RESULTS: Ethanol intake induced mild cell degeneration, liver damage, oxidative lesions, and inflammation. Surprisingly, ethanol intake combined with creatine exacerbated cell degeneration and fat accumulation, hepatic expression of genes related to ethanol metabolism, oxidative stress and inflammation, and promoted oxidative stress and elevated plasma alanine aminotransferase (P < 0.05). CONCLUSION: Creatine supplementation associated with ethanol is able to interfere in the alcohol metabolism and oxidative stress and to exacerbate ethanol-induced hepatic damage. These new findings are opposite to those observed in several studies where protective effects of creatine in a wide variety of injury models, including non-alcoholic fatty liver disease, were described.


Subject(s)
Creatine/pharmacokinetics , Dietary Supplements , Ethanol/metabolism , Liver Diseases/metabolism , Animals , Creatine/administration & dosage , Disease Models, Animal , Ethanol/adverse effects , Liver/drug effects , Liver/metabolism , Liver Diseases/etiology , Male , Mice , Oxidative Stress/drug effects
2.
Pathophysiology ; 21(4): 257-65, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24996969

ABSTRACT

Cardiac cachexia is a syndrome that has received increased attention in recent years. Although an association between proteolysis and cardiac cachexia has been proposed, the direct influence of oxidative stress on the process has not been demonstrated. In the present study, the right (RH) and left (LH) hearts (atrium and ventricle of each side of the heart) were collected from rats at the 5th and 10th days after phosphate buffer (control) orWalker-256 solid tumour implantation. Immediately after sacrifice, cachexia was determined in tumour-bearing animals by the formula: [(inicial body weight-final body weight+tumour weight+weight gain of control group)/(initial body weight+body mass gain of control group)]×100%; RH and LH were stored until use. Oxidative stress and proteolysis were determined in each collected sample. In addition, heart samples were collected from a separate set of animals to determine the thickness of the left and right ventricles. Cachexia values increased over time after tumour implantation from 6.85% at the 5th day to 17.76% at the 10th day. There was no significant difference in LH wet weight and ventricle thickness compared with the control, where as RH wet weight (0.109±0.09g at the 5th day and 0.093±0.09g at the 10th day) and thickness (420±16µm at the 5th day and 279±08µm at the 10th day) were significantly decreased at both time points when compared with control values (0.153±0.06g and 607±21µm, respectively). tert-Butyl-stimulated chemiluminescence analysis revealed a significant increase in the LH and decrease in the RH oxidative stress profiles. Carbonylated proteins increased in the LH (140%, p<0.05) and RH (100%, p<0.05) at the 5th day, and significantly decreased in both sides on the 10th day compared to controls. Chemotrypsin-like, caspase-like, and calpain-like activities were evaluated by chemiluminescence, and only calpain-like activity was found to increase at the 5th day in the RH. In the LH, all proteolytic activities systems were decreased when compared with controls. Together, these results demonstrate that oxidative stress appears to play a different role in mass modulation on the LH and RH. The proteolytic systems evaluated herein also appear to have different effects on the responses developed during cardiac cachexia in the two sides of the heart.

SELECTION OF CITATIONS
SEARCH DETAIL
...