Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ACS Biomater Sci Eng ; 9(9): 5389-5404, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37561763

ABSTRACT

Along with poor implant-bone integration, peri-implant diseases are the major causes of implant failure. Although such diseases are primarily triggered by biofilm accumulation, a complex inflammatory process in response to corrosive-related metallic ions/debris has also been recognized as a risk factor. In this regard, by boosting the titanium (Ti) surface with silane-based positive charges, cationic coatings have gained increasing attention due to their ability to kill pathogens and may be favorable for corrosion resistance. Nevertheless, the development of a cationic coating that combines such properties in addition to having a favorable topography for implant osseointegration is lacking. Because introducing hydroxyl (-OH) groups to Ti is essential to increase chemical bonds with silane, Ti pretreatment is of utmost importance to achieve such polarization. In this study, plasma electrolytic oxidation (PEO) was investigated as a new route to pretreat Ti with OH groups while providing favorable properties for implant application compared with traditional hydrothermal treatment (HT). To produce bactericidal and corrosion-resistant cationic coatings, after pretreatment with PEO or HT (Step 1), surface silanization was subsequently performed via immersion-based functionalization with 3-aminopropyltriethoxysilane (APTES) (Step 2). In the end, five groups were assessed: untreated Ti (Ti), HT, PEO, HT+APTES, and PEO+APTES. PEO created a porous surface with increased roughness and better mechanical and tribological properties compared with HT and Ti. The introduction of -OH groups by HT and PEO was confirmed by Fourier transform infrared spectroscopy and the increase in wettability producing superhydrophilic surfaces. After silanization, the surfaces were polarized to hydrophobic ones, and an increase in the amine functional group was observed by X-ray photoelectron spectroscopy, demonstrating a considerable amount of positive ions. Such protonation may explain the enhanced corrosion resistance and dead bacteria (Streptococcus aureus and Escherichia coli) found for PEO+APTES. All groups presented noncytotoxic properties with similar blood plasma protein adsorption capacity vs the Ti control. Our findings provide new insights into developing next-generation cationic coatings by suggesting that a tailorable porous and oxide coating produced by PEO has promise in designing enhanced cationic surfaces targeting biomedical and dental implant applications.


Subject(s)
Silanes , Titanium , Surface Properties , Titanium/pharmacology , Titanium/chemistry , Cations
2.
Adv Colloid Interface Sci ; 314: 102860, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36931199

ABSTRACT

Polypyrrole (PPy) is one of the most studied conductive polymers due to its electrical conductivity and biological properties, which drive the possibility of numerous applications in the biomedical area. The physical-chemical features of PPy allow the manufacture of biocompatible devices, enhancing cell adhesion and proliferation. Furthermore, owing to the electrostatic interactions between the negatively charged bacterial cell wall and the positive charges in the polymer structure, PPy films can perform an effective antimicrobial activity. PPy is also frequently associated with biocompatible agents and antimicrobial compounds to improve the biological response. Thus, this comprehensive review appraised the available evidence regarding the PPy-based films deposited on metallic implanted devices for biomedical applications. We focus on understanding key concepts that could influence PPy attributes regarding antimicrobial effect and cell behavior under in vitro and in vivo settings. Furthermore, we unravel the several agents incorporated into the PPy film and strategies to improve its functionality. Our findings suggest that incorporating other elements into the PPy films, such as antimicrobial agents, biomolecules, and other biocompatible polymers, may improve the biological responses. Overall, the basic properties of PPy, when combined with other composites, electrostimulation techniques, or surface treatment methods, offer great potential in biocompatibility and/or antimicrobial activities. However, challenges in synthesis standardization and potential limitations such as low adhesion and mechanical strength of the film must be overcome to improve and broaden the application of PPy film in biomedical devices.


Subject(s)
Polymers , Pyrroles , Polymers/pharmacology , Polymers/chemistry , Pyrroles/pharmacology , Pyrroles/chemistry , Cell Adhesion , Electric Conductivity
3.
Adv Colloid Interface Sci ; 311: 102805, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36434916

ABSTRACT

Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.


Subject(s)
Anti-Infective Agents , Coated Materials, Biocompatible , Prostheses and Implants , Titanium , Animals , Anti-Infective Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Oxidation-Reduction , Surface Properties , Titanium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...