Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 275: 119334, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33711391

ABSTRACT

AIMS: We examined the effects of treatment with 1-nitro-2-phenylethane (NP), a novel soluble guanylate cyclase stimulator, on monocrotaline (MCT)-induced PAH in rats. MAIN METHODS: At day 0, male adult rats were injected with a single subcutaneous (s.c.) dose of monocrotaline (60 mg/kg). Control (CNT) rats received an equal volume of monocrotaline's vehicle only (s.c.). Four weeks later, MCT-treated rats were treated orally for 14 days with NP (50 mg/kg/day) (MCT-NP group) or its vehicle (Tween 2%) (MCT-V group). At the end of the treatment period and before invasive hemodynamic study, rats of all experimental groups were examined by echocardiography. KEY FINDINGS: With respect to CNT rats, MCT-V rats showed significant; (1) increases in pulmonary artery (PA) diameter, RV free wall thickness and end-diastolic RV area, and increase of Fulton index; (2) decreases in maximum pulmonary flow velocity, PA acceleration time (PAAT), PAAT/time of ejection ratio, and velocity-time integral; (3) increases in estimated mean pulmonary arterial pressure; (4) reduction of maximal relaxation to acetylcholine in aortic rings, and (5) increases in wall thickness of pulmonary arterioles. All these measured parameters were significantly reduced or even abolished by oral treatment with NP. SIGNIFICANCE: NP reversed endothelial dysfunction and pulmonary vascular remodeling, which in turn reduced ventricular hypertrophy. NP reduced pulmonary artery stiffness, normalized the pulmonary artery diameter and alleviated RV enlargement. Thus, NP may represent a new therapeutic or a complementary approach to treatment of PAH.


Subject(s)
Benzene Derivatives/pharmacology , Pulmonary Arterial Hypertension/drug therapy , Animals , Echocardiography , Endothelium, Vascular/drug effects , Hemodynamics/drug effects , Male , Monocrotaline/antagonists & inhibitors , Monocrotaline/pharmacology , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/diagnostic imaging , Pulmonary Artery/drug effects , Rats , Rats, Wistar , Soluble Guanylyl Cyclase/drug effects , Vascular Remodeling/drug effects
2.
Eur J Pharmacol ; 897: 173948, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33609564

ABSTRACT

The soluble guanylate cyclase (sGC)/GMPc pathway plays an important role in controlling pulmonary arterial hypertension (PAH). We investigated whether the novel sGC stimulator trans-4-methoxy-ß-nitrostyrene (T4MN), ameliorates monocrotaline (MCT)-induced PAH. At Day 0, rats were injected with MCT (60 mg/kg, s. c.). Control (CNT) rats received an equal volume of monocrotaline vehicle only (s.c.). Four weeks later, MCT-treated rats were orally treated for 14 days with T4MN (75 mg/kg/day) (MCT-T4MN group) or its vehicle (MCT-V group), and with sildenafil (SIL; 50 mg/kg) (MCT-SIL group). Compared to the CNT group, MCT treatment induced a significant increase in both the Fulton index and RV systolic pressure but significantly reduced the maximum relaxation induced by acetylcholine. Indeed, MCT treatment increased the wall thickness of small and larger pulmonary arterioles. Oral treatment with T4MN and SIL reduced the Fulton index and RV systolic pressure compared to the MCT-V group. Maximum relaxation induced by acetylcholine was significantly enhanced in MCT-SIL group. Both T4MN and SIL significantly reduced the enhanced wall thickness of small and larger pulmonary arterioles. Treatment with T4MN has a beneficial effect on PAH by reducing RV systolic pressure and consequently right ventricular hypertrophy, and by reducing pulmonary artery remodeling. T4MN may represent a new therapeutic or complementary approach for the treatment of PAH.


Subject(s)
Arterioles/drug effects , Enzyme Activators/pharmacology , Hypertension, Pulmonary/drug therapy , Lung/blood supply , Soluble Guanylyl Cyclase/metabolism , Styrenes/pharmacology , Vascular Remodeling/drug effects , Animals , Arterioles/enzymology , Arterioles/physiopathology , Disease Models, Animal , Enzyme Activation , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/enzymology , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/enzymology , Hypertrophy, Right Ventricular/physiopathology , Hypertrophy, Right Ventricular/prevention & control , Monocrotaline , Signal Transduction , Vasodilation/drug effects , Ventricular Dysfunction, Right/enzymology , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/prevention & control , Ventricular Function, Right/drug effects , Ventricular Remodeling/drug effects
3.
Clin Exp Pharmacol Physiol ; 48(5): 717-725, 2021 05.
Article in English | MEDLINE | ID: mdl-33506524

ABSTRACT

Trans-4-methoxy-ß-nitrostyrene (T4MN) induced more potent vasorelaxant effects in resistance arteries from hypertensive rats than its parent drug, ß-nitrostyrene 1-nitro-2-phenylethene (NPe). To better understand the influence of insertion of the electron-releasing methoxy group in the aromatic ring of NPe, we investigated vasorelaxant effects of T4MN in isolated pulmonary artery and compared them with those of NPe in view of the potential interest of T4MN in pulmonary arterial hypertension. T4MN and NPe both caused concentration-dependent vasorelaxation in pulmonary artery rings pre-contracted with either phenylephrine (1 µmol/L) or KCl (60 mmol/L), an effect unaffected by endothelium removal. In endothelium-intact preparations pre-contracted with phenylephrine, the vasorelaxant effect of T4MN was more potent than that of NPe. However, unlike NPe, this effect was significantly reduced following pretreatment with 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µmol/L, a guanylate cyclase inhibitor) or tetraethylammonium (5 mmol/L, a potassium channel blocker). T4MN abolished the CaCl2 -induced contractions in pulmonary artery preparations stimulated with phenylephrine (PHE) under Ca2+ -free conditions in the presence of verapamil, to preferentially activate receptor-operated calcium channels. From these findings, we propose that T4MN evokes endothelium-independent vasorelaxant effects in isolated rat pulmonary artery, partially by inhibiting Ca2+ influx through L-type Ca2+ channels, as well as by activating soluble guanylate cyclase and potassium channels. The present results suggest the therapeutic potential of T4MN in treating pulmonary arterial hypertension.


Subject(s)
Styrenes , Vasodilation , Animals , Pulmonary Artery , Rats
4.
Fundam Clin Pharmacol ; 35(2): 331-340, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33141973

ABSTRACT

Previously, we showed that 1-nitro-2-phenylethene, a nitrostyrene derivative of 1-nitro-2-phenylethane, induced vasorelaxant effects in rat aorta preparations. Here, we studied mechanisms underlying the vasorelaxant effects of its structural analog, trans-4-chloro-ß-nitrostyrene (T4CN), in rat aortic rings. Increasing concentrations of T4CN (0.54-544.69 µm) fully and similarly relaxed contractions induced by phenylephrine (PHE, 1 µm) or KCl (60 mm) in endothelium-intact aortic rings with IC50 values of 66.74 [59.66-89.04] and 79.41 [39.92-158.01] µm, respectively. In both electromechanical and pharmacomechanical couplings, the vasorelaxant effects of T4CN remained unaltered by endothelium removal, as evidenced by the IC50 values (108.35 [56.49-207.78] and 65.92 [39.72-109.40] µm, respectively). Pretreatment of endothelium-intact preparations with L-NAME, ODQ, glibenclamide, or TEA did not change the vasorelaxant effect of T4CN. Under Ca2+ -free conditions, T4CN significantly reduced the phasic contractions induced by caffeine or PHE, as well as the contractions due to exogenous CaCl2 in aortic preparations stimulated with PHE (in the presence of verapamil). These results suggest that in rat aortic rings, T4CN induced vasorelaxation independently from the activation of soluble guanylate cyclase/cGMP pathway, an effect that may be related to the electrophilicity of the substituted chloro-nitrostyrene. This vasorelaxation seems to involve inhibition of both calcium influx from the extracellular milieu and calcium mobilization from intracellular stores mediated by IP3 receptors and by ryanodine-sensitive Ca2+ channels.


Subject(s)
Aorta, Thoracic/drug effects , Styrenes/pharmacology , Vasodilator Agents/pharmacology , Animals , Inhibitory Concentration 50 , Male , Rats , Rats, Wistar
5.
Front Pharmacol ; 10: 1407, 2019.
Article in English | MEDLINE | ID: mdl-31849663

ABSTRACT

We previously reported that trans-4-methoxy-ß-nitrostyrene (T4MN) evoked higher vasorelaxant effects in small resistance arteries from spontaneously hypertensive rats (SHRs) in comparison with its parent drug, the ß-nitrostyrene 1-nitro-2-phenylethene (NPe). To further our knowledge of the influence of insertion of an electron-releasing group such as methoxy in the aromatic ring of NPe, we investigated the cardiovascular responses to intravenous (i.v.) injection of T4MN in SHRs and compared with those of NPe. In anesthetized SHRs, i.v. treatment with T4MN (0.03-0.5 mg/kg) and NPe (0.03-3 mg/kg) induced dose-dependent bradycardia and hypotension, which were biphasic (named phases 1 and 2). Magnitude of these responses was significantly higher for T4MN compared with NPe. Phase 1 cardiovascular responses to both T4MN (0.3 mg/kg) and NPe (3 mg/kg) were prevented by cervical bivagotomy or perineural treatment of both cervical vagus nerves with capsaicin, but was unchanged by i.v. pretreatment with capsazepine or ondansetron. After injection into the left ventricle, NPe and T4MN no longer evoked phase 1 responses. In conscious SHRs, NPe (3 mg/kg, i.v.), and T4MN (0.3 mg/kg, i.v.) evoked monophasic hypotensive and bradycardiac effects which were suppressed by i.v. pretreatment with methylatropine. It is concluded that i.v. administration of NPe and T4MN in SHRs induced a vago-vagal hypotensive and bradycardic reflex that did not involve the activation of vanilloid TRPV1 or 5-HT3 receptors located on vagal pulmonary sensory nerves. With respect to its parent drug, T4MN was more potent in inducing this reflex. Phase 2 hypotensive response to i.v. NPe and T4MN seems partially resulting from a direct vasodilatory action. It seems that insertion of a methoxy group into the aromatic ring stabilized NPe, which in turn increases its cardiovascular effects.

6.
Eur J Pharmacol ; 849: 154-159, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30716310

ABSTRACT

Previously, we showed that the synthetic nitroderivative trans-4-methyl-ß-nitrostyrene (T4MeN) induced vasorelaxant effects in rat isolated aortic rings. Here, we investigated the mechanisms underlying the cardiovascular effects of T4MeN in normotensive rats. In pentobarbital-anesthetized rats, intravenous (i.v.) injection of T4MeN (0.03-0.5 mg/kg) induced a rapid (onset time of 1-2 s) and dose-dependent bradycardia and hypotension. These cardiovascular responses to T4MeN were abolished by bilateral cervical vagotomy or selective blockade of neural conduction of vagal C-fiber afferents by perineural treatment of both cervical vagus nerves with capsaicin. Hypotension and bradycardia were also recorded when T4MeN was directly injected in the right, but not into the left ventricle. Furthermore, they were significantly reduced by i.v. pretreatment with capsazepine but remained unaltered by ondansetron or suramin. In conscious rats, the dose-dependent hypotension and bradycardia evoked by T4MeN were abolished by i.v. methylatropine pretreatment. In conclusion, bradycardiac and depressor responses induced by T4MeN has a vago-vagal reflex origin resulting from the vagal pulmonary afferents stimulation. The transduction mechanism seems to involve the activation of vanilloid TRPV1, but not purinergic (P2X) or 5-HT3 receptors located on vagal pulmonary sensory nerves.


Subject(s)
Bradycardia/chemically induced , Lung/innervation , Nerve Fibers, Unmyelinated/drug effects , Reflex/drug effects , Styrenes/pharmacology , TRPV Cation Channels/metabolism , Vagus Nerve/drug effects , Animals , Bradycardia/metabolism , Bradycardia/physiopathology , Male , Nerve Fibers, Unmyelinated/metabolism , Nerve Fibers, Unmyelinated/physiology , Rats , Rats, Wistar
7.
Inflammation ; 41(4): 1349-1360, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29654432

ABSTRACT

Salicytamide is a new drug developed through molecular modelling and rational drug design by the molecular association of paracetamol and salicylic acid. This study was conducted to assess the acute oral toxicity, antinociceptive, and antioedematogenic properties of salicytamide. Acute toxicity was based on the OECD 423 guidelines. Antinociceptive properties were investigated using the writhing, hot plate and formalin tests in Swiss mice. Antioedematogenic properties were evaluated using the carrageenan-induced paw oedema model and croton oil-induced dermatitis in Wistar rats. Salicytamide did not promote behavioural changes or animal deaths during acute oral toxicity evaluation. Furthermore, salicytamide exhibited peripheral antinociceptive activity as evidenced by the reduction in writhing behaviour (ED50 = 4.95 mg/kg) and licking time in the formalin test's inflammatory phase. Also, salicytamide elicited central antinociceptive activity on both hot plate test and formalin test's neurogenic phase. Additionally, salicytamide was effective in reducing carrageenan or croton oil-induced oedema formation. Overall, we have shown that salicytamide, proposed here as a new NSAID candidate, did not induce oral acute toxicity and elicited both peripheral antinociceptive effects (about 10-25 times more potent than its precursors in the writhing test) and antioedematogenic properties. Salicytamide also presented central antinociceptive activity, which seems to be mediated through opioid-independent mechanisms. These findings reveal salicytamide as a promising antinociceptive/antioedematogenic drug candidate.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Drug Design , Acetaminophen/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Edema/drug therapy , Mice , Nociception/drug effects , Pain/drug therapy , Rats, Wistar , Salicylates/chemistry
9.
Clin Exp Pharmacol Physiol ; 44(7): 787-794, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28432808

ABSTRACT

Mechanisms underlying the vasorelaxant effects of trans-4-methyl-ß-nitrostyrene (T4MeN) were studied in rat aortic rings. In endothelium-intact preparations, T4MeN fully and similarly relaxed contractions induced by phenylephrine (PHE) (IC50  = 61.41 [35.40-87.42] µmol/L) and KCl (IC50  = 83.50 [56.63-110.50] µmol/L). The vasorelaxant effect of T4MeN was unchanged by endothelium removal, pretreatment with L-NAME, indomethacin, tetraethylammonium, ODQ or MDL-12,330A. Under Ca2+ -free conditions, T4MeN significantly reduced with a similar potency: (i) phasic contractions induced by PHE, but not by caffeine; (ii) contractions due to CaCl2 in aortic preparations stimulated with PHE (in the presence of verapamil) or high KCl; (iii) contractions evoked by the restoration of external Ca2+ levels after depletion of intracellular Ca2+ stores in the presence of thapsigargin. In contrast, T4MeN was more potent at inhibiting contractions evoked by the tyrosine phosphatase inhibitor, sodium orthovanadate, than those induced by the activator of PKC, phorbol-12,13-dibutyrate. These results suggest that T4MeN induces an endothelium- independent vasorelaxation that appears to occur intracellularly through the inhibition of contractions that are independent of Ca2+ influx from the extracellular milieu but involve phosphorylation of tyrosine residues.


Subject(s)
Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , Styrenes/pharmacology , Vasodilation/drug effects , Vasodilator Agents/chemical synthesis , Vasodilator Agents/pharmacology , Animals , Calcium Signaling/drug effects , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Endothelium, Vascular/drug effects , Intracellular Space/drug effects , Intracellular Space/metabolism , Phorbol 12,13-Dibutyrate/pharmacology , Potassium Chloride/pharmacology , Rats , Styrenes/chemistry , Vanadates/pharmacology , Vasodilator Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...