Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Acta Biomater ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750915

ABSTRACT

Large skin injuries heal as scars. Stiffness gradually increases from normal skin to scar tissue (20x higher), due to excessive deposition and crosslinking of extracellular matrix (ECM) mostly produced by (myo)fibroblasts. Using a custom mold, skin-derived ECM hydrogels (dECM) were UV crosslinked after diffusion of ruthenium (Ru) to produce a Ru-dECM gradient hydrogel. The Ru diffusion gradient equates to a stiffness gradient and models physiology of the scarred skin. Crosslinking in Ru-dECM hydrogels results in a 23-fold increase in stiffness from a stiffness similar to that of normal skin. Collagen fiber density increases in a stiffness-dependent fashion while stress relaxation also alters, with one additional Maxwell element necessary for characterizing Ru-dECM. Alignment of fibroblasts encapsulated in hydrogels suggests that the stiffness gradient directs fibroblasts to orientate at ∼45 ° in regions below 120 kPa. In areas above 120 kPa, fibroblasts decrease the stiffness prior to adjusting their orientation. Furthermore, fibroblasts remodel their surrounding ECM in a gradient-dependent fashion, with rearrangement of cell-surrounding ECM in high-stiffness areas, and formation of interlaced collagen bundles in low-stiffness areas. Overall, this study shows that fibroblasts remodel their local environment to generate an optimal ECM mechanical and topographical environment. STATEMENT OF SIGNIFICANCE: This study developed a versatile in vitro model with a gradient stiffness using skin-derived ECM hydrogel with unchanged biochemical environment. Using Ruthenium crosslinking, a 20-fold stiffness increase was achieved as observed in fibrotic skin. The interaction between fibroblasts and matrix depends on changes in the matrix stiffness. The stiffness gradient directed the alignment of fibroblasts with ∼45° in regions with≤ 120 kPa. The cells in regions with the higher stiffness decreased stiffness first and then oriented themselves. Furthermore, fibroblasts remodeled surrounding ECM and regulated its mechanics in a gradient-dependent fashion to reach an optimal condition. Our study highlights the dynamic interplay between cells and surrounding matrix, shedding light on potential mechanisms and strategies to target scar formation and remodeling.

2.
Acta Biomater ; 177: 118-131, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38350556

ABSTRACT

Idiopathic pulmonary fibrosis (IPF), for which effective treatments are limited, results in excessive and disorganized deposition of aberrant extracellular matrix (ECM). An altered ECM microenvironment is postulated to contribute to disease progression through inducing profibrotic behavior of lung fibroblasts, the main producers and regulators of ECM. Here, we examined this hypothesis in a 3D in vitro model system by growing primary human lung fibroblasts in ECM-derived hydrogels from non-fibrotic (control) or IPF lung tissue. Using this model, we compared how control and IPF lung-derived fibroblasts responded in control and fibrotic microenvironments in a combinatorial manner. Culture of fibroblasts in fibrotic hydrogels did not alter in the overall amount of collagen or glycosaminoglycans but did cause a drastic change in fiber organization compared to culture in control hydrogels. High-density collagen percentage was increased by control fibroblasts in IPF hydrogels at day 7, but decreased at day 14. In contrast, IPF fibroblasts only decreased the high-density collagen percentage at day 14, which was accompanied by enhanced fiber alignment in IPF hydrogels. Similarly, stiffness of fibrotic hydrogels was increased only by control fibroblasts by day 14 while those of control hydrogels were not altered by fibroblasts. These data highlight how the ECM-remodeling responses of fibroblasts are influenced by the origin of both the cells and the ECM. Moreover, by showing how the 3D microenvironment plays a crucial role in directing cells, our study paves the way in guiding future investigations examining fibrotic processes with respect to ECM remodeling responses of fibroblasts. STATEMENT OF SIGNIFICANCE: In this study, we investigated the influence of the altered extracellular matrix (ECM) in Idiopathic Pulmonary Fibrosis (IPF), using a 3D in vitro model system composed of ECM-derived hydrogels from both IPF and control lungs, seeded with human IPF and control lung fibroblasts. While our results indicated that fibrotic microenvironment did not change the overall collagen or glycosaminoglycan content, it resulted in a dramatically alteration of fiber organization and mechanical properties. Control fibroblasts responded differently from IPF fibroblasts, highlighting the unique instructive role of the fibrotic ECM and the interplay with fibroblast origin. These results underscore the importance of 3D microenvironments in guiding pro-fibrotic responses, offering potential insights for future IPF therapies as well as other fibrotic diseases and cancer.


Subject(s)
Extracellular Matrix , Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Fibrosis , Collagen , Fibroblasts/pathology , Hydrogels/pharmacology
3.
Sci Rep ; 13(1): 19393, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938243

ABSTRACT

Abnormal deposition of extracellular matrix (ECM) in lung tissue is a characteristic of idiopathic pulmonary fibrosis (IPF). Increased collagen deposition is also accompanied by altered collagen organization. Collagen type XIV, a fibril-associated collagen, supports collagen fibril organization. Its status in IPF has not been described at the protein level yet. In this study, we utilized publicly available datasets for single-cell RNA-sequencing for characterizing collagen type XIV expression at the gene level. For protein level comparison, we applied immunohistochemical staining for collagen type XIV on lung tissue sections from IPF patients and compared it to lung tissue sections from never smoking and ex-smoking donors. Analyzing the relative amounts of collagen type XIV at the whole tissue level, as well as in parenchyma, airway wall and bronchial epithelium, we found consistently lower proportions of collagen type XIV in all lung tissue compartments across IPF samples. Our study suggests proportionally lower collagen type XIV in IPF lung tissues may have implications for the assembly of the ECM fibers potentially contributing to progression of fibrosis.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Extracellular Matrix , Fibril-Associated Collagens , Patients , Lung
4.
ERJ Open Res ; 9(3)2023 May.
Article in English | MEDLINE | ID: mdl-37228276

ABSTRACT

Background: Interleukin-11 (IL-11) is linked to the pathogenesis of idiopathic pulmonary fibrosis (IPF), since IL-11 induces myofibroblast differentiation and stimulates their excessive collagen deposition in the lung. In IPF there is disrupted alveolar structural architecture, yet the effect of IL-11 on the dysregulated alveolar repair remains to be elucidated. Methods: We hypothesised that epithelial-fibroblast communication associated with lung repair is disrupted by IL-11. Thus, we studied whether IL-11 affects the repair responses of alveolar lung epithelium using mouse lung organoids and precision-cut lung slices (PCLS). Additionally, we assessed the anatomical distribution of IL-11 and IL-11 receptor (IL-11R) in human control and IPF lungs using immunohistochemistry. Results: IL-11 protein was observed in airway epithelium, macrophages and in IPF lungs, also in areas of alveolar type 2 (AT2) cell hyperplasia. IL-11R staining was predominantly present in smooth muscle and macrophages. In mouse organoid co-cultures of epithelial cells with lung fibroblasts, IL-11 decreased organoid number and reduced the fraction of Prosurfactant Protein C-expressing organoids, indicating dysfunctional regeneration initiated by epithelial progenitors. In mouse PCLS exposed to IL-11, ciliated cell markers were increased. The response of primary human fibroblasts to IL-11 on gene expression level was minimal, though bulk RNA-sequencing revealed IL-11 modulated various processes which are associated with IPF, including unfolded protein response, glycolysis and Notch signalling. Conclusions: IL-11 disrupts alveolar epithelial regeneration by inhibiting progenitor activation and suppressing the formation of mature alveolar epithelial cells. Evidence for a contribution of dysregulated fibroblast-epithelial communication to this process is limited.

5.
Am J Physiol Lung Cell Mol Physiol ; 324(6): L799-L814, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37039368

ABSTRACT

Extracellular matrix (ECM) remodeling has been associated with chronic lung diseases. However, information about specific age-associated differences in lung ECM is currently limited. In this study, we aimed to identify and localize age-associated ECM differences in human lungs using comprehensive transcriptomic, proteomic, and immunohistochemical analyses. Our previously identified age-associated gene expression signature of the lung was re-analyzed limiting it to an aging signature based on 270 control patients (37-80 years) and focused on the Matrisome core geneset using geneset enrichment analysis. To validate the age-associated transcriptomic differences on protein level, we compared the age-associated ECM genes (false discovery rate, FDR < 0.05) with a profile of age-associated proteins identified from a lung tissue proteomics dataset from nine control patients (49-76 years) (FDR < 0.05). Extensive immunohistochemical analysis was used to localize and semi-quantify the age-associated ECM differences in lung tissues from 62 control patients (18-82 years). Comparative analysis of transcriptomic and proteomic data identified seven ECM proteins with higher expression with age at both gene and protein levels: COL1A1, COL6A1, COL6A2, COL14A1, FBLN2, LTBP4, and LUM. With immunohistochemistry, we demonstrated higher protein levels with age for COL6A2 in whole tissue, parenchyma, airway wall, and blood vessel, for COL14A1 and LUM in bronchial epithelium, and COL1A1 in lung parenchyma. Our study revealed that higher age is associated with lung ECM remodeling, with specific differences occurring in defined regions within the lung. These differences may affect lung structure and physiology with aging and as such may increase susceptibility to developing chronic lung diseases.NEW & NOTEWORTHY We identified seven age-associated extracellular matrix (ECM) proteins, i.e., COL1A1, COL6A1, COL6A2 COL14A1, FBLN2, LTBP4, and LUM with higher transcript and protein levels in human lung tissue with age. Extensive immunohistochemical analysis revealed significant age-associated differences for COL6A2 in whole tissue, parenchyma, airway wall, and vessel, for COL14A1 and LUM in bronchial epithelium, and COL1A1 in parenchyma. Our findings lay a new foundation for the investigation of ECM differences in age-associated chronic lung diseases.


Subject(s)
Lung Diseases , Proteomics , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Adolescent , Young Adult , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/genetics , Lung/metabolism , Lung Diseases/metabolism
6.
Front Pharmacol ; 13: 989169, 2022.
Article in English | MEDLINE | ID: mdl-36408252

ABSTRACT

In fibrosis remodelling of ECM leads to changes in composition and stiffness. Such changes can have a major impact on cell functions including proliferation, secretory profile and differentiation. Several studies have reported that fibrosis is characterised by increased senescence and accumulating evidence suggests that changes to the ECM including altered composition and increased stiffness may contribute to premature cellular senescence. This study investigated if increased stiffness could modulate markers of senescence and/or fibrosis in primary human lung fibroblasts. Using hydrogels representing stiffnesses that fall within healthy and fibrotic ranges, we cultured primary fibroblasts from non-diseased lung tissue on top of these hydrogels for up to 7 days before assessing senescence and fibrosis markers. Fibroblasts cultured on stiffer (±15 kPa) hydrogels showed higher Yes-associated protein-1 (YAP) nuclear translocation compared to soft hydrogels. When looking at senescence-associated proteins we also found higher secretion of receptor activator of nuclear factor kappa-B ligand (RANKL) but no change in transforming growth factor-ß1 (TGF-ß1) or connective tissue growth factor (CTGF) expression and higher decorin protein deposition on stiffer matrices. With respect to genes associated with fibrosis, fibroblasts on stiffer hydrogels compared to soft had higher expression of smooth muscle alpha (α)-2 actin (ACTA2), collagen (COL) 1A1 and fibulin-1 (Fbln1) and higher Fbln1 protein deposition after 7 days. Our results show that exposure of lung fibroblasts to fibrotic stiffness activates genes and secreted factors that are part of fibrotic responses and part of the Senescence-associated secretory phenotype (SASP). This overlap may contribute to the creation of a feedback loop whereby fibroblasts create a perpetuating cycle reinforcing progression of a fibrotic response.

7.
Gels ; 8(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36354636

ABSTRACT

Background: Angiogenesis is a crucial process in physiological maintenance and tissue regeneration. To understand the contribution of angiogenesis, it is essential to replicate this process in an environment that reproduces the biochemical and physical properties which are largely governed by the extracellular matrix (ECM). We investigated vascularization in cardiac left ventricular ECM hydrogels to mimic post-myocardial repair. We set out to assess and compare different destructive and non-destructive methods, optical as well as non-optical, to visualize angiogenesis and associated matrix remodeling in myocardial ECM hydrogels. Methods: A total of 100,000, 300,000, and 600,000 Human Pulmonary Microvascular Endothelial Cells (HPMEC) were seeded in left ventricular cardiac ECM hydrogel in 48-well plates. After 1, 7, and 14 days of culture, the HPMEC were imaged by inverted fluorescence microscopy and 3D confocal laser scanning microscopy (Zeiss Cell Discoverer 7). In addition, cell-seeded ECM hydrogels were scanned by optical coherence tomography (OCT). Fixed and paraffin-embedded gels were thin-sectioned and assessed for ECM components via H&E, picrosirius red histochemical staining, and immunostaining for collagen type I. ImageJ-based densitometry was used to quantify vascular-like networks and GraphPad was used for statistical analyses. Results: Qualitative analyses were realized through fluoromicrographs obtained by the confocal laser scanning microscope which allowed us to visualize the extensive vascular-like networks that readily appeared at all seeding densities. Quantification of networks was only possible using fluoromicrographs from inverted microscopy. These showed that, after three days, the number of master junctions was seeding density-dependent. The resolution of optical coherence tomography was too low to distinguish between signals caused by the ECM and cells or networks, yet it did show that gels, irrespective of cells, were heterogeneous. Interestingly, (immuno)histochemistry could clearly distinguish between the cast cardiac-derived matrix and newly deposited ECM in the hydrogels. The H&E staining corroborated the presence of vascular-like network structures, albeit that sectioning inevitably led to the loss of 3D structure. Conclusions: Except for OCT, all methods had complementary merit and generated qualitative and quantitative data that allowed us to understand vascular network formation in organ-derived ECM hydrogels.

8.
FASEB J ; 36(7): e22374, 2022 07.
Article in English | MEDLINE | ID: mdl-35670745

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is characterized by long-term airflow obstruction with cigarette smoke as a key risk factor. Extracellular matrix (ECM) alterations in COPD may lead to small airway wall fibrosis. Altered collagen cross-linking, potentially mediated by the lysyl oxidase (LO) family of enzymes (LOX, LOXL1-4), orchestrates disturbed ECM homeostasis. In this study, we investigated the effects of smoking status and presence and severity of COPD on LOs gene and protein expression in the airways and the impact of LOs inhibition on airway contraction in an ex vivo mouse model. We used gene expression data from bronchial brushings, airway smooth muscle (ASM) cells in vitro and immunohistochemistry in lung tissue to assess smoke- and COPD-associated differences in LOs gene and protein expression in the small airways. We found higher LOX expression in current- compared to ex-smokers and higher LOXL1 expression in COPD compared to non-COPD patients. LOX and LOXL2 expression were upregulated in COPD ASM cells treated with cigarette smoke extract. LOXL1 and LOXL2 protein levels were higher in small airways from current- compared to non-smokers. In COPD patients, higher LOXL1 and lower LOX protein levels were observed, but no differences for LOXL2, LOXL3, and LOXL4 protein were detected in small airways. Inhibiting LOs activity increased airway contraction in murine lung slices. COPD-associated changes in LOs, in particular LOX and LOXL1, may be related to smoking and contribute to impaired airway function, providing potential novel targets for preventing or treating small airways changes in COPD.


Subject(s)
Protein-Lysine 6-Oxidase , Pulmonary Disease, Chronic Obstructive , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Animals , Humans , Lung/metabolism , Mice , Protein-Lysine 6-Oxidase/genetics , Protein-Lysine 6-Oxidase/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Smoking/adverse effects
9.
Acta Biomater ; 147: 50-62, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35605955

ABSTRACT

Extracellular matrix (ECM) is a dynamic network of proteins, proteoglycans and glycosaminoglycans, providing structure to the tissue and biochemical and biomechanical instructions to the resident cells. In fibrosis, the composition and the organization of the ECM are altered, and these changes influence cellular behaviour. Biochemical (i. e. protein composition) and biomechanical changes in ECM take place simultaneously in vivo. Investigating these changes individually in vitro to examine their (patho)physiological effects has been difficult. In this study, we generated an in vitro model to reflect the altered mechanics of a fibrotic microenvironment through applying fibre crosslinking via ruthenium/sodium persulfate crosslinking on native lung ECM-derived hydrogels. Crosslinking of the hydrogels without changing the biochemical composition of the ECM resulted in increased stiffness and decreased viscoelastic stress relaxation. The altered stress relaxation behaviour was explained using a generalized Maxwell model. Fibre analysis of the hydrogels showed that crosslinked hydrogels had a higher percentage of matrix with a high density and a shorter average fibre length. Fibroblasts seeded on ruthenium-crosslinked lung ECM-derived hydrogels showed myofibroblastic differentiation with a loss of spindle-like morphology together with greater α-smooth muscle actin (α-SMA) expression, increased nuclear area and circularity without any decrease in the viability, compared with the fibroblasts seeded on the native lung-derived ECM hydrogels. In summary, ruthenium crosslinking of native ECM-derived hydrogels provides an exciting opportunity to alter the biomechanical properties of the ECM-derived hydrogels while maintaining the protein composition of the ECM to study the influence of mechanics during fibrotic lung diseases. STATEMENT OF SIGNIFICANCE: Fibrotic lung disease is characterized by changes in composition and excessive deposition of extracellular matrix (ECM). ECM fibre structure also changes due to crosslinking, which results in mechanical changes. Separating the changes in composition and mechanical properties has been difficult to date. In this study, we developed an in vitro model that allows alteration of the mechanical changes alone by applying fibre crosslinking in native lung ECM-derived hydrogels. Characterisations of the crosslinked hydrogels indicated the model mimicked mechanical properties of fibrotic lung tissue and reflected altered fibre organisation. This ECM-based fibrosis model provides a method to preserve the native protein composition while altering the mechanical properties providing an important tool, not only for lung but also other organ fibrosis.


Subject(s)
Hydrogels , Ruthenium , Biomechanical Phenomena , Extracellular Matrix/metabolism , Fibrosis , Humans , Hydrogels/chemistry , Ruthenium/pharmacology
10.
Acta Biomater ; 141: 209-218, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35038586

ABSTRACT

Lung implantable devices have been widely adopted as mechanical interventions for a wide variety of pulmonary pathologies. Despite successful initial treatment, long-term efficacy can often be impacted by fibrotic or granulation tissue formation at the implant sites. This study aimed to explore the lung-device interface by identifying the adhered proteome on lung devices explanted from patients with severe emphysema. In this study, scanning electron microscopy is used to visualize the adhesion of cells and proteins to silicone and nitinol surfaces of explanted endobronchial valves. By applying high-resolution mass-spectrometry, the surface proteome of eight explanted valves is characterized, identifying 263 unique protein species to be mutually adsorbed on the valves. This subset is subjected to gene enrichment analysis, matched with known databases and further validated using immunohistochemistry. Enrichment analyses reveal dominant clusters of functionally-related ontology terms associated with coagulation, pattern recognition receptor signaling, immune responses, cytoskeleton organization, cell adhesion and migration. Matching results show that extracellular matrix proteins and damage-associated molecular patterns are cardinal in the formation of the surface proteome. This is the first study investigating the composition of the adhered proteome on explanted lung devices, setting the groundwork for hypothesis generation and further exploration. STATEMENT OF SIGNIFICANCE: This is the first study investigating the composition of the adhered proteome on explanted lung devices. Lung implantable devices have been widely adopted as mechanical interventions for pulmonary pathologies. Despite successful initial treatment, long-term efficacy can often be impacted by fibrotic or granulation tissue formation around the implant sites. We identified the adhered proteome on explanted lung devices using several techniques. We identified 263 unique protein species to be mutually adsorbed on explanted lung devices. Pathway analyses revealed that these proteins are associated with coagulation, pattern recognition receptor signaling, immune responses, cytoskeleton organization, cell adhesion and migration. Furthermore, we identified that especially extracellular matrix proteins and damage-associated molecular patterns were cardinal in the formation of the surface proteome.


Subject(s)
Proteome , Silicones , Alloys , Extracellular Matrix Proteins , Humans , Lung , Receptors, Pattern Recognition
11.
Polymers (Basel) ; 13(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34578013

ABSTRACT

The proteins and polysaccharides of the extracellular matrix (ECM) provide architectural support as well as biochemical and biophysical instruction to cells. Decellularized, ECM hydrogels replicate in vivo functions. The ECM's elasticity and water retention renders it viscoelastic. In this study, we compared the viscoelastic properties of ECM hydrogels derived from the skin, lung and (cardiac) left ventricle and mathematically modelled these data with a generalized Maxwell model. ECM hydrogels from the skin, lung and cardiac left ventricle (LV) were subjected to a stress relaxation test under uniaxial low-load compression at a 20%/s strain rate and the viscoelasticity determined. Stress relaxation data were modelled according to Maxwell. Physical data were compared with protein and sulfated GAGs composition and ultrastructure SEM. We show that the skin-ECM relaxed faster and had a lower elastic modulus than the lung-ECM and the LV-ECM. The skin-ECM had two Maxwell elements, the lung-ECM and the LV-ECM had three. The skin-ECM had a higher number of sulfated GAGs, and a highly porous surface, while both the LV-ECM and the lung-ECM had homogenous surfaces with localized porous regions. Our results show that the elasticity of ECM hydrogels, but also their viscoelastic relaxation and gelling behavior, was organ dependent. Part of these physical features correlated with their biochemical composition and ultrastructure.

12.
Front Pharmacol ; 12: 669037, 2021.
Article in English | MEDLINE | ID: mdl-34393771

ABSTRACT

Introduction: Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease characterized by excess deposition and altered structure of extracellular matrix (ECM) in the lungs. The fibrotic ECM is paramount in directing resident cells toward a profibrotic phenotype. Collagens, an important part of the fibrotic ECM, have been shown to be structurally different in IPF. To further understand the disease to develop better treatments, the signals from the ECM that drive fibrosis need to be identified. Adipose tissue-derived stromal cell conditioned medium (ASC-CM) has demonstrated antifibrotic effects in animal studies but has not been tested in human samples yet. In this study, the collagen structural integrity in (fibrotic) lung tissue, its interactions with fibroblasts and effects of ASC-CM treatment hereon were studied. Methods: Native and decellularized lung tissue from patients with IPF and controls were stained for denatured collagen using a collagen hybridizing peptide. Primary lung fibroblasts were seeded into decellularized matrices from IPF and control subjects and cultured for 7 days in the presence or absence of ASC-CM. Reseeded matrices were fixed, stained and analyzed for total tissue deposition and specific protein expression. Results: In both native and decellularized lung tissue, more denatured collagen was observed in IPF tissue compared to control tissue. Upon recellularization with fibroblasts, the presence of denatured collagen was equalized in IPF and control matrices, whereas total ECM was higher in IPF matrices than in the control. Treatment with ASC-CM resulted in less ECM deposition, but did not alter the levels of denatured collagen. Discussion: Our data showed that ASC-CM can inhibit fibrotic ECM-induced profibrotic behavior of fibroblasts. This process was independent of collagen structural integrity. Our findings open up new avenues for ASC-CM to be explored as treatment for IPF.

13.
Cells ; 10(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209854

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor survival. Age is a major risk factor, and both alveolar epithelial cells and lung fibroblasts in this disease exhibit features of cellular senescence, a hallmark of ageing. Accumulation of fibrotic extracellular matrix (ECM) is a core feature of IPF and is likely to affect cell function. We hypothesize that aberrant ECM deposition augments fibroblast senescence, creating a perpetuating cycle favouring disease progression. In this study, primary lung fibroblasts were cultured on control and IPF-derived ECM from fibroblasts pretreated with or without profibrotic and prosenescent stimuli, and markers of senescence, fibrosis-associated gene expression and secretion of cytokines were measured. Untreated ECM derived from control or IPF fibroblasts had no effect on the main marker of senescence p16Ink4a and p21Waf1/Cip1. However, the expression of alpha smooth muscle actin (ACTA2) and proteoglycan decorin (DCN) increased in response to IPF-derived ECM. Production of the proinflammatory cytokines C-X-C Motif Chemokine Ligand 8 (CXCL8) by lung fibroblasts was upregulated in response to senescent and profibrotic-derived ECM. Finally, the profibrotic cytokines transforming growth factor ß1 (TGF-ß1) and connective tissue growth factor (CTGF) were upregulated in response to both senescent- and profibrotic-derived ECM. In summary, ECM deposited by IPF fibroblasts does not induce cellular senescence, while there is upregulation of proinflammatory and profibrotic cytokines and differentiation into a myofibroblast phenotype in response to senescent- and profibrotic-derived ECM, which may contribute to progression of fibrosis in IPF.


Subject(s)
Cellular Senescence , Extracellular Matrix/metabolism , Fibroblasts/pathology , Actins/genetics , Actins/metabolism , Aged , Biomarkers/metabolism , Cells, Cultured , Connective Tissue Growth Factor/metabolism , Doublecortin Domain Proteins , Female , Fibroblasts/ultrastructure , Fibrosis , Gene Expression Regulation , Humans , Idiopathic Pulmonary Fibrosis/pathology , Male , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Middle Aged , Neuropeptides/genetics , Neuropeptides/metabolism , Phenotype , Tissue Donors , Transforming Growth Factor beta/metabolism
14.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L832-L844, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33656381

ABSTRACT

Mesenchymal stromal cells (MSCs) may provide crucial support in the regeneration of destructed alveolar tissue (emphysema) in chronic obstructive pulmonary disease (COPD). We hypothesized that lung-derived MSCs (LMSCs) from patients with emphysema are hampered in their repair capacity, either intrinsically or due to their interaction with the damaged microenvironment. LMSCs were isolated from the lung tissue of controls and patients with severe emphysema and characterized at baseline. In addition, LMSCs were seeded onto control and emphysematous decellularized lung tissue scaffolds and assessed for deposition of extracellular matrix (ECM). We observed no differences in surface markers, differentiation/proliferation potential, and expression of ECM genes between control- and COPD-derived LMSCs. Notably, COPD-derived LMSCs displayed lower expression of FGF10 and HGF messenger RNA (mRNA) and hepatocyte growth factor (HGF) and decorin protein. When seeded on control decellularized lung tissue scaffolds, control- and COPD-derived LMSCs showed no differences in engraftment, proliferation, or survival within 2 wk, with similar ability to deposit new matrix on the scaffolds. Moreover, LMSC numbers and the ability to deposit new matrix were not compromised on emphysematous scaffolds. Collectively, our data show that LMSCs from patients with COPD compared with controls show less expression of FGF10 mRNA, HGF mRNA and protein, and decorin protein, whereas other features including the mRNA expression of various ECM molecules are unaffected. Furthermore, COPD-derived LMSCs are capable of engraftment, proliferation, and functioning on native lung tissue scaffolds. The damaged, emphysematous microenvironment as such does not hamper the potential of LMSCs. Thus, specific intrinsic deficiencies in growth factor production by diseased LMSCs may contribute to impaired alveolar repair in emphysema.


Subject(s)
Extracellular Matrix/pathology , Lung/pathology , Mesenchymal Stem Cells/pathology , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Emphysema/pathology , Tissue Scaffolds/chemistry , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cell Differentiation , Cell Proliferation , Cells, Cultured , Extracellular Matrix/metabolism , Female , Gene Expression Regulation , Humans , Lung/metabolism , Male , Mesenchymal Stem Cells/metabolism , Middle Aged , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/metabolism
15.
J Pathol ; 251(1): 49-62, 2020 05.
Article in English | MEDLINE | ID: mdl-32083318

ABSTRACT

Increased iron levels and dysregulated iron homeostasis, or both, occur in several lung diseases. Here, the effects of iron accumulation on the pathogenesis of pulmonary fibrosis and associated lung function decline was investigated using a combination of murine models of iron overload and bleomycin-induced pulmonary fibrosis, primary human lung fibroblasts treated with iron, and histological samples from patients with or without idiopathic pulmonary fibrosis (IPF). Iron levels are significantly increased in iron overloaded transferrin receptor 2 (Tfr2) mutant mice and homeostatic iron regulator (Hfe) gene-deficient mice and this is associated with increases in airway fibrosis and reduced lung function. Furthermore, fibrosis and lung function decline are associated with pulmonary iron accumulation in bleomycin-induced pulmonary fibrosis. In addition, we show that iron accumulation is increased in lung sections from patients with IPF and that human lung fibroblasts show greater proliferation and cytokine and extracellular matrix responses when exposed to increased iron levels. Significantly, we show that intranasal treatment with the iron chelator, deferoxamine (DFO), from the time when pulmonary iron levels accumulate, prevents airway fibrosis and decline in lung function in experimental pulmonary fibrosis. Pulmonary fibrosis is associated with an increase in Tfr1+ macrophages that display altered phenotype in disease, and DFO treatment modified the abundance of these cells. These experimental and clinical data demonstrate that increased accumulation of pulmonary iron plays a key role in the pathogenesis of pulmonary fibrosis and lung function decline. Furthermore, these data highlight the potential for the therapeutic targeting of increased pulmonary iron in the treatment of fibrotic lung diseases such as IPF. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Idiopathic Pulmonary Fibrosis/pathology , Iron/metabolism , Airway Remodeling/drug effects , Animals , Bleomycin/pharmacology , Cell Proliferation , Cells, Cultured , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Fibroblasts/drug effects , Fibroblasts/pathology , Humans , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Lung/drug effects , Lung/pathology , Macrophages/drug effects , Macrophages/pathology , Mice, Knockout
16.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L59-L64, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31664853

ABSTRACT

Cigarette smoke (CS), a highly complex mixture containing more than 4,000 compounds, causes aberrant cell responses leading to tissue damage around the airways and alveoli, which underlies various lung diseases. Phosphodiesterases (PDEs) are a family of enzymes that hydrolyze cyclic nucleotides. PDE inhibition induces bronchodilation, reduces the activation and recruitment of inflammatory cells, and the release of various cytokines. Currently, the selective PDE4 inhibitor roflumilast is an approved add-on treatment for patients with severe chronic obstructive pulmonary disease with chronic bronchitis and a history of frequent exacerbations. Additional selective PDE inhibitors are being tested in preclinical and clinical studies. However, the effect of chronic CS exposure on the expression of PDEs is unknown. Using mRNA isolated from nasal and bronchial brushes and lung tissues of never smokers and current smokers, we compared the gene expression of 25 PDE coding genes. Additionally, the expression and distribution of PDE3A and PDE4D in human lung tissues was examined. This study reveals that chronic CS exposure modulates the expression of various PDE members. Thus, CS exposure may change the levels of intracellular cyclic nucleotides and thereby impact the efficiency of PDE-targeted therapies.


Subject(s)
Lung/drug effects , Phosphoric Diester Hydrolases/metabolism , Smoke/adverse effects , Tobacco Products/adverse effects , Adult , Aminopyridines/pharmacology , Benzamides/pharmacology , Cyclopropanes/pharmacology , Female , Gene Expression/drug effects , Humans , Male , Middle Aged , Phosphodiesterase 4 Inhibitors/pharmacology , Pulmonary Disease, Chronic Obstructive/metabolism , RNA, Messenger/metabolism , Smoking/adverse effects
17.
JCI Insight ; 52019 07 25.
Article in English | MEDLINE | ID: mdl-31343988

ABSTRACT

Tissue remodeling/fibrosis is a major feature of all fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). It is underpinned by accumulating extracellular matrix (ECM) proteins. Fibulin-1c (Fbln1c) is a matricellular ECM protein associated with lung fibrosis in both humans and mice, and stabilizes collagen formation. Here we discovered that Fbln1c was increased in the lung tissues of IPF patients and experimental bleomycin-induced pulmonary fibrosis. Fbln1c-deficient (-/-) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin and tenascin-c in collagen deposits following bleomycin challenge. In a novel mechanism of fibrosis Fbln1c bound to latent transforming growth factor (TGF)-ß binding protein-1 (LTBP1) to induce TGF-ß activation, and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1 and LTBP1 co-localized in lung tissues from IPF patients. Thus, Fbln1c may be a novel driver of TGF-ß-induced fibrosis involving LTBP1 and may be an upstream therapeutic target.


Subject(s)
Calcium-Binding Proteins/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Latent TGF-beta Binding Proteins/metabolism , Transforming Growth Factor beta/metabolism , Adult , Animals , Bleomycin/toxicity , Calcium-Binding Proteins/genetics , Cells, Cultured , Disease Models, Animal , Female , Fibroblasts , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/surgery , Lung/cytology , Lung/pathology , Lung Transplantation , Male , Mice , Mice, Knockout , Middle Aged , Primary Cell Culture , Protein Isoforms/metabolism , Young Adult
18.
Front Immunol ; 10: 2976, 2019.
Article in English | MEDLINE | ID: mdl-31998293

ABSTRACT

Pregnancy is associated with adaptations of the immune response and with changes in the gutmicrobiota. We hypothesized the gut microbiota are involved in inducing (part of) the immunological adaptations during pregnancy. To test this hypothesis, we collected feces from pregnant conventional mice before and during pregnancy (days 7, 14, and 18) and microbiota were measured using 16S RNA sequencing. At day 18, mice were sacrificed and splenic (various Th cell populations) and blood immune cells (monocyte subsets) were measured by flow cytometry. The data were compared with splenic and blood immune cell populations from pregnant (day 18) germfree mice and non-pregnant conventional and germfree mice. Finally, the abundances of the individual gut bacteria in the microbiota of each conventional pregnant mouse were correlated to the parameters of the immune response of the same mouse. The microbiota of conventional mice were significantly different at the end of pregnancy (day 18) as compared with pre-pregnancy (Permanova, p < 0.05). The Shannon index was decreased and the Firmicutes/Bacteroidetes ratio was increased (Friedman followed by Dunn's test, p < 0.05), while abundances of various species (such as Allobaculum stercoricanis, Barnesiella intestihominis, and Roseburia faecis) were significantly different at day 18 compared with pre-pregnancy. In pregnant conventional mice, the percentage of Th1 cells was decreased, while the percentages of Treg cells and Th2 cells were or tended to be increased vs. non-pregnant mice. In germfree mice, only the percentage of Th1 cells was decreased in pregnant vs. non-pregnant mice, with no effect of pregnancy on Treg and Th2 cells. The percentages of monocyte subsets were affected by pregnancy similarly in conventional and germfree mice. However, the activation status of monocytes (expression of CD80 and MHCII) was affected by pregnancy mainly in conventional mice, and not in germfree mice. Correlation (Spearman's coefficient) of pregnancy affected microbiota with pregnancy affected immune cells, i.e., immune cells that were only affected differently in conventional mice and germfree mice, showed 4 clusters of bacteria and 4 clusters of immune cells, some of these clusters were correlated with each other. For instance, the microbiota in cluster 1 and 2 (in which there were various short chain fatty acid producing microbiota) are positively correlated with immune cells in cluster B, containing Treg cells and Th2 cells. Microbiota and immune cells are affected by pregnancy in mice. The different immunological adaptations to pregnancy between conventional and germfree mice, such as the increase in Treg and tendency to an increase in Th2 cells in conventional pregnant mice only, may suggest that the microbiota may play a role in adapting the maternal immune response to pregnancy.


Subject(s)
Gastrointestinal Microbiome , Pregnancy/immunology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Feces/microbiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , Th1 Cells/immunology , Th2 Cells/immunology
19.
Sci Rep ; 8(1): 1785, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29379071

ABSTRACT

Probiotics such as L. plantarum WCFS1 can modulate immune responses in healthy subjects but how this occurs is still largely unknown. Immune-sampling in the Peyer Patches has been suggested to be one of the mechanisms. Here we studied the systemic and intestinal immune effects in combination with a trafficking study through the intestine of a well-established immunomodulating probiotic, i.e. L. plantarum WCFS1. We demonstrate that not more than 2-3 bacteria were sampled and in many animals not any bacterium could be found in the PP. Despite this, L. plantarum was associated with a strong increase in infiltration of regulatory CD103+ DCs and generation of regulatory T cells in the spleen. Also, a reduced splenic T helper cell cytokine response was observed after ex vivo restimulation. L. plantarum enhanced Treg cells and attenuated the T helper 2 response in healthy mice. We demonstrate that, in healthy mice, immune sampling is a rare phenomenon and not required for immunomodulation. Also in absence of any sampling immune activation was found illustrating that host-microbe interaction on the Peyer Patches was enough to induce immunomodulation of DCs and T-cells.


Subject(s)
Dendritic Cells/immunology , Lactobacillus plantarum/immunology , Peyer's Patches/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Cytokines/immunology , Immunomodulation/immunology , Intestines/microbiology , Male , Mice , Mice, Inbred BALB C , Probiotics/pharmacology , Spleen/immunology , T-Lymphocytes, Helper-Inducer/immunology
20.
Front Immunol ; 8: 1385, 2017.
Article in English | MEDLINE | ID: mdl-29163474

ABSTRACT

Advanced age is associated with chronic low-grade inflammation, which is usually referred to as inflammaging. Elderly are also known to have an altered gut microbiota composition. However, whether inflammaging is a cause or consequence of an altered gut microbiota composition is not clear. In this study, gut microbiota from young or old conventional mice was transferred to young germ-free (GF) mice. Four weeks after gut microbiota transfer immune cell populations in spleen, Peyer's patches, and mesenteric lymph nodes from conventionalized GF mice were analyzed by flow cytometry. In addition, whole-genome gene expression in the ileum was analyzed by microarray. Gut microbiota composition of donor and recipient mice was analyzed with 16S rDNA sequencing. Here, we show by transferring aged microbiota to young GF mice that certain bacterial species within the aged microbiota promote inflammaging. This effect was associated with lower levels of Akkermansia and higher levels of TM7 bacteria and Proteobacteria in the aged microbiota after transfer. The aged microbiota promoted inflammation in the small intestine in the GF mice and enhanced leakage of inflammatory bacterial components into the circulation was observed. Moreover, the aged microbiota promoted increased T cell activation in the systemic compartment. In conclusion, these data indicate that the gut microbiota from old mice contributes to inflammaging after transfer to young GF mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...